CENTRAL DEPARTMENT OF HYDROLOGY AND METEOROLOGY

TEACHING PLAN

Institute:	Institute of Science and Technology (IOST)	Department:	Central Department of Hydrology and Meteorology (CDHM)
Level:	M.Sc.	Year/Semester:	III
Subject:	Paleoclimatology (Dendrochronology)	Course No.:	Hymet 603
FullMarks:	50 (25)	Total Period:	30 lecture hours (15 dendro)

Class/ Period	Chapter/ Unit	Learning Outcomes of the Chapter/Unit	Major Components	Description/Particulars	Remarks
3 Class Introduction hours	Introduction	able to understand tree ring formation, how climate influence tree ring, history of dendro and various statistical parameters used	Contents Objectives Teaching	Introduction of dendrochronologyDefine of tree rings, various tree rings and correlation with temperature and precipitation, ringswidth chronology, relationships between various climatic parameters, definition of various statistical parameters used in tree ring chronologyDidactic questioning, Short lecturing,	
		in dendro study	Methods Materials	Picactic questioning, Short lecturing, Peer teaching, Discussion, Audiovisual, Whiteboard and marker, Multimedia projector, Laptop with ppt	-

Class/ Period	Chapter/ Unit	Learning Outcomes of the Chapter/Unit	Major Components	Description/Particulars	Remarks
			Evaluation	History of dendrochronology, What is dendrochronology? How tree ring width is controlled by climate ?	
3	Tree ring sampling	Student will be able to know	Content	Tree ring sampling:	
Class hours		how to get tree ring samples	Objective	To make familier about the tree ring sampling techniques	
		from field for dendroclimatic study	Teaching Methods	Didactic questioning, Short lecturing,Peerteaching,Discussion,Audiovisual and demostration.	
			Materials	Whiteboard and marker, Multimedia projector, Laptop with ppt, increment borer.	
			Evaluation	Site selection and description, various methods of tree ring sampling, Description of tree ring instrument, types of borers/tree corer, definition of various statistic used in the study, the standard tree ring chronology, tree ring climate growth response	
	Lab measurement		Content	How to measure the tree rings	
hours	procedures:		Objective	To make student familier about the tree ring measurement techniques	
			Teaching Methods	Didactic questioning, Short lecturing,Peerteaching,Discussion,Audiovisual, and demostration.	
			Materials	Whiteboard and marker, Multimedia projector, Laptop with ppt, dendro lab.	
			Evaluation	Instrumental procedure used in the lab, storing the tree ring samples, data recording, sample preparation and	

Class/ Period	Chapter/ Unit	Learning Outcomes of the Chapter/Unit	Major Components	Description/Particulars	Remarks	
				dating methods, standardization and chronology construction		
5 Class hours	Application of tree ring study in Meteorology		Content	Application of tree ring in Meteorology		
	Meteorology		Objective	Shortout the important application of dendrochronology for meteorolgogy (dendroclimatology,dendrohydrology etc)		
			Teaching Methods	Didactic questioning, Short lecturing,Peerteaching,Discussion,Audiovisual,		
			Materials	Whiteboard and marker, Multimedia projector, Laptop with ppt,		
			Evaluation	Relation of tree ring with temperature and other various parameters, drought and wet periods, spatial and temporal variation of tree ring climatology, long term variation of paleoclimatic condition		
15	Dendrochronology	importance of de handle the field an	Learning Achievement : At the end of the course, student will understand the importance of dendrochronology and its use for the paleo studies and able to handle the field and laboratory activities independently for paleoclimatological and paleohydrological studies			
Books: Prescribe	ed/ Basic Book	1				

Tree Rings and Climate: H.C.FRITTS, ACADEMIC PRESS LONDON, NEWYORKS, AND FRANCISCO

Referrence Books:

Fundamentals of Tree ring Research: James H. Speer, The University of Arizona Press.

Dendroclimatology progess and prospect: Edits Malcolm K. Hughes, Thomas W. Swetnam, Henry F. Diaz, Springer

.....

..... Prepared By

Approved By

Asso. Prof. Binod Dawadi (Subject Teacher) Prof.Deepak Aryal (HoD)

CENTRAL DEPARTMENT OF HYDROLOGY AND METEOROLOGY

TEACHING PLAN

Institute:	Institute of Science and Technology (IOST)	Department:	Central Department of Hydrology and Meteorology (CDHM)
Level:	MSc	Year/Semester:	Ш
Subject:	Remote sensing and Disaster	Course No.:	Hymet 556
Full Marks:	50	Total Period:	45 lecture hours

Class/ Period	Chapter/ Unit	Learning Outcomes of the Chapter/Unit	Major Components	Description/Particulars	Remarks
1 st	Introduction	Student will be able to understand	Contents	Introduction of remote sensing	
(120 min)		different type of meteorological data generation techniques, history and scope of remote sensing	Objectives	To discuss a different type of meteorological data generation techniques To learn the history of remote sensing To learn the basic applications of RS To know scope and career in RS	
			Teaching Methods	Didactic questioning, Short lecturing, Peer teaching, Discussion, Audiovisual,	
			Materials	Whiteboard and marker, Multimedia projector, Laptop with ppt	
			Evaluation	 What is meteorological data? What are the different techniques of data acquisition? What is remote sensing? What are the advantages of RS? 	

Class/ Period	Chapter/ Unit	Learning Outcomes of the Chapter/Unit	Major Components	Description/Particulars	Remarks
				• What are the basic application of remote sensing?	
	Learning		Learning	• Understand RS basics.	
			Achievement	 Distinguish between RS and in-situ observation. Understand broad application of RS 	
			Ducacyih ad/Dagia	in several sectors.	
			Prescribed/ Basic	Remote sensing and Image	
			Book	Interpretation. Lillesand, T. M. and Kiefer, R. W.	

CENTRAL DEPARTMENT OF HYDROLOGY AND METEOROLOGY

TEACHING PLAN

Institute:	Institute of Science and Technology (IOST)	Department:	Central Department of Hydrology and Meteorology (CDMH)
Level:	MSc	Year/Semester:	II
Subject:	Remote sensing and Disaster	Course No.:	Hymet 556
Full Marks:	50	Total Period:	45 lecture hours

Class/ Period	Chapter/ Unit	Learning Outcomes of the Chapter/Unit	Major Components	Description/Particulars	Remarks
2nd			Contents	Introduction of satellite meteorology	

Class/ Period	Chapter/ Unit	Learning Outcomes of the Chapter/Unit	Major Components	Description/Particulars	Remarks
(120 min)	Introduction of satellite meteorology (SM)	Student will be able to understand satellite meteorology	Objectives	To learn the history of satellite meteorology To learn the basic fields and applications of satellite meteorology To introduce satellite-based global data sets	
			Teaching Methods	Didactic questioning, Short lecturing, Peer teaching, Discussion, Audiovisual	
			Materials	Whiteboard and marker, Multimedia projector, Laptop with ppt	
			Evaluation	 What is satellite meteorology? What are the different types of satellite-based global data sets? What are the basic fields and applications of satellite meteorology? What are the advantages of satellite meteorology? 	
			Learning Achievement	 Understand satellite meteorology basics. Understand the broad advantage of SM and in-situ observation. Scope and career in SM. 	
			Prescribed/ Basic Book	Remote sensing and Image Interpretation. Lillesand, T. M. and Kiefer, R. W. <u>https://cimss.ssec.wisc.edu/satmet</u>	

CENTRAL DEPARTMENT OF HYDROLOGY AND METEOROLOGY

TEACHING PLAN

Institute:	Institute of Science and Technology (IOST)	Department:	Central Department of Hydrology and Meteorology (CDMH)
Level:	MSc	Year/Semester:	II
Subject:	Remote sensing and Disaster	Course No.:	Hymet 556
Full Marks:	50	Total Period:	45 lecture hours

Class/ Period	Chapter/ Unit	Learning Outcomes of the Chapter/Unit	Major Components	Description/Particulars	Remarks
3rd	Weather satellite	Student will be able to understand	Contents	weather satellite and orbits	
(120 min)	and orbits	weather satellite and orbits	Objectives	 To learn Satellite Orbits Geostationary Operational Environmental Satellites (GOES) Polar Operational Environmental Satellites (POES) To learn remote Sensing Satellite Instruments Radiometers Sounders 	
			Teaching Methods	Didactic questioning, Short lecturing, Peer teaching, Discussion, Audiovisual	
			Materials	Whiteboard and marker, Multimedia projector, Laptop with ppt	
			Evaluation	What is satellite orbits?What are the differences between GOES and POES?	

Class/ Period	Chapter/ Unit	Learning Outcomes of the Chapter/Unit	Major Components	Description/Particulars	Remarks
				• What are radiometers and sounders and its applications?	
			Learning	• Understand GOES and POES.	
			Achievement	Understand the polar and geostationary orbits?Understand remote sensing instruments	
			Prescribed/ Basic	Remote sensing and Image Interpretation.	-
			Book	Lillesand, T. M. and Kiefer, R. W.	
				https://cimss.ssec.wisc.edu/satmet	

CENTRAL DEPARTMENT OF HYDROLOGY AND METEOROLOGY

TEACHING PLAN

Institute:	Institute of Science and	Department:	Central Department of
	Technology (IOST)		Hydrology and Meteorology (CDMH)
Level:	MSc	Year/Semester:	II
Subject:	Remote sensing and Disaster	Course No.:	Hymet 556
Full Marks:	50	Total Period:	45 lecture hours

Class/ Period	Chapter/ Unit	Learning Outcomes of the Chapter/Unit	Major Components	Description/Particulars	Remarks
3rd	Weather satellite	Student will be able to understand	Contents	Weather satellite and orbits	
(120 min)	and orbits	weather satellite and orbits	Objectives Teaching Methods	To learn satellite Images • POES Images • GOES Images To learn Math and Physics Behind Satellite Technology • Newton's Laws of Gravity • Kepler's Laws of Motion Didactic questioning, Short lecturing, Peer teaching, Discussion, Audiovisual	
			Materials	Whiteboard and marker, Multimedia projector, Laptop with ppt	
			Evaluation	 Distinguish POES and GOES images. Identify different cloud type using satellite images What are the Physics Behind Satellite Technology 	

Class/ Period	Chapter/ Unit	Learning Outcomes of the Chapter/Unit	Major Components	Description/Particulars	Remarks
			Learning Achievement	 Understand GOES and POES images Understand basic physics behind satellite technology 	
			Prescribed/ Basic Book	Remote sensing and Image Interpretation. Lillesand, T. M. and Kiefer, R. W.	
				https://cimss.ssec.wisc.edu/satmet	

CENTRAL DEPARTMENT OF HYDROLOGY AND METEOROLOGY

TEACHING PLAN

Institute:	Institute of Science and Technology (IOST)	Department:	Central Department of Hydrology and Meteorology (CDMH)
Level:	MSc	Year/Semester:	II
Subject:	Remote sensing and Disaster	Course No.:	Hymet 556
Full Marks:	50	Total Period:	45 lecture hours

Class/ Period	Chapter/ Unit	Learning Outcomes of the Chapter/Unit	Major Components	Description/Particulars	Remarks
4th (120 min)	Weather satellite and orbits	Student will be able to understand weather satellite and orbits	Contents Objectives	Weather satellite and orbits To learn satellite Images o POES Images o GOES Images To learn Math and Physics Behind Satellite Technology	-

Class/ Period	Chapter/ Unit	Learning Outcomes of the Chapter/Unit	Major Components	Description/Particulars	Remarks
				 Newton's Laws of Gravity Kepler's Laws of Motion 	
			Teaching Methods	Didactic questioning, Short lecturing, Peer teaching, Discussion, Audiovisual	
			Materials	Whiteboard and marker, Multimedia projector, Laptop with ppt	
			Evaluation	 Distinguish POES and GOES images. Identify different cloud type using satellite images What are the Physics Behind Satellite Technology 	
			Learning Achievement	 Understand GOES and POES images Understand basic physics behind satellite technology 	
			Prescribed/ Basic Book	Remote sensing and Image Interpretation. Lillesand, T. M. and Kiefer, R. W.	
				https://cimss.ssec.wisc.edu/satmet	

CENTRAL DEPARTMENT OF HYDROLOGY AND METEOROLOGY

TEACHING PLAN

Institute:	Institute of Science and Technology (IOST)	Department:	Central Department of Hydrology and Meteorology (CDMH)
Level:	MSc	Year/Semester:	II
Subject:	Remote sensing and Disaster	Course No.:	Hymet 556
Full Marks:	50	Total Period:	45 lecture hours

Class/ Period	Chapter/ Unit	Learning Outcomes of the Chapter/Unit	Major Components	Description/Particulars	Remarks																	
5 th	Electromagnetic	Student will be	Contents	Weather satellite and orbits																		
radiation (120 min)	radiation	adiation able to understand the use of electromagnetic radiation in RS technology	Objectives	To learn the electromagnetic spectrum To learn electromagnetic Waves To discuss the electromagnetic Spectrum and Radiation theory To understand how satellite radiometers "see" different sections of the Spectrum																		
														Teaching Methods	Didactic questioning, Short lecturing, Peer teaching, Discussion, Audiovisual							
						Materials	Whiteboard and marker, Multimedia projector, Laptop with ppt															
							Evaluation	What is the electromagnetic spectrum? How satellite radiometers "see" different sections of the spectrum? Discuss the electromagnetic Spectrum and Radiation theory														
					Learning Achievement	 Understand the electromagnetic spectrum and radiation theory. Importance of electromagnetic radiation in RS technology. 																

CENTRAL DEPARTMENT OF HYDROLOGY AND METEOROLOGY

TEACHING PLAN

Institute:	Institute of Science and Technology (IOST)	Department:	Central Department of Hydrology and Meteorology (CDMH)
Level:	MSc	Year/Semester:	II
Subject:	Remote sensing and Disaster	Course No.:	Hymet 556
Full Marks:	50	Total Period:	45 lecture hours

Class/ Period	Chapter/ Unit	Learning Outcomes of the Chapter/Unit	Major Components	Description/Particulars	Remarks
6 th	Cloud identification	The student will be able to	Contents	Cloud identification	
(120 min)	identify clouds using satellite images	Objectives	To learn physical properties and different types of clouds To identify different types of clouds using satellite images		
			Teaching Methods	Didactic questioning, Short lecturing, Peer teaching, Discussion, Audiovisual	-
			Materials	Whiteboard and marker, Multimedia projector, Laptop with ppt	-
			Evaluation	What are the different types of clouds? How to distinguish different types of clouds using satellite images?	
			Learning Achievement	 Understand different types of clouds. Understand how different types of clouds can be identify using satellite images. 	
			Prescribed/ Basic Book	Remote sensing and Image Interpretation. Lillesand, T. M. and Kiefer, R. W.	

Class/ Period	Chapter/ Unit	Learning Outcomes of the Chapter/Unit	Major Components	Description/Particulars	Remarks
				https://cimss.ssec.wisc.edu/satmet	

CENTRAL DEPARTMENT OF HYDROLOGY AND METEOROLOGY

TEACHING PLAN

Institute:	Institute of Science and Technology (IOST)	Department:	Central Department of Hydrology and Meteorology (CDMH)
Level:	MSc	Year/Semester:	Ш
Subject:	Remote sensing and Disaster	Course No.:	Hymet 556
Full Marks:	50	Total Period:	45 lecture hours

Class/ Period	Chapter/ Unit	Learning Outcomes of the Chapter/Unit	Major Components	Description/Particulars	Remarks
7 th (120 min)	Satellite images	The student will be able to understand different types of satellite images and its application in meteorological research	Contents Objectives	Satellite images To learn three basic types of satellite images (visible, infrared, and water vapor). To learn how to identify basic cloud types and storm systems in satellite images. To demonstrate the basic knowledge necessary to interpret satellite observations	
			Teaching Methods	Didactic questioning, Short lecturing, Peer teaching, Discussion, Audiovisual, Online satellite image visualization system	
			Materials	Whiteboard and marker, Multimedia projector, Laptop with ppt, Internet, Online satellite images	
			Evaluation	What are the types of satellite images? How to identify basic cloud types and storm systems in satellite images?	

Class/ Period	Chapter/ Unit	Learning Outcomes of the Chapter/Unit	Major Components	Description/Particulars	Remarks
			Learning Achievement	 Understand visible, infrared, and water vapor images. Identify basic cloud types and storm systems in satellite images. Interpret satellite observations 	
			Prescribed/ Basic Book	Remote sensing and Image Interpretation. Lillesand, T. M. and Kiefer, R. W. <u>https://cimss.ssec.wisc.edu/satmet</u>	

CENTRAL DEPARTMENT OF HYDROLOGY AND METEOROLOGY

TEACHING PLAN

Institute:	Institute of Science and Technology (IOST)	Department:	Central Department of Hydrology and Meteorology (CDMH)
Level:	MSc	Year/Semester:	II
Subject:	Remote sensing and Disaster	Course No.:	Hymet 556
Full Marks:	50	Total Period:	45 lecture hours

Class/ Period	Chapter/ Unit	Learning Outcomes of the Chapter/Unit	Major Components	Description/Particulars	Remarks
8 th	Monitor	The student will	Contents	Monitor global environment	
(120 min)	global environment	be able to understand how satellite observation can be used to monitor the global environment	Objectives	To learn how geostationary satellites are used to detect forest fires & monitor biomass burning To learn the connection between biomass burning and global warming Use of satellite images to identify Urban Heat Islands To learn the use of satellite observation in disaster risk reduction and management. To learn NDVI	
			Teaching Methods	Didactic questioning, Short lecturing, Peer teaching, Discussion, Audiovisual, Online satellite image visualization system	
			Materials	Whiteboard and marker, Multimedia projector, Laptop with ppt, Internet, Online satellite images	

Class/ Period	Chapter/ Unit	Learning Outcomes of the Chapter/Unit	Major Components	Description/Particulars	Remarks
			Evaluation Learning Achievement	How geostationary satellites are used to detect forest fires & monitor biomass burning What is the connection between biomass burning and global warming Explain the application of satellite observation in different types of disaster risk reduction/management Understand how geostationary satellites are used to detect forest fires & monitor biomass burning Understand how useful satellite observations are in disaster risk reduction/management	
			Prescribed/ Basic Book	Remote sensing and Image Interpretation. Lillesand, T. M. and Kiefer, R. W. <u>https://cimss.ssec.wisc.edu/satmet</u>	-

CENTRAL DEPARTMENT OF HYDROLOGY AND METEOROLOGY

TEACHING PLAN

Institute:	Institute of Science and Technology (IOST)	Department:	Central Department of Hydrology and Meteorology (CDMH)
Level:	MSc	Year/Semester:	П
Subject:	Remote sensing and Disaster	Course No.:	Hymet 556
Full Marks:	50	Total Period:	45 lecture hours

Class/ Period	Chapter/ Unit	Learning Outcomes of the Chapter/Unit	Major Components	Description/Particulars	Remarks
9 th	Analysis of	The student will be able to	Contents	Analysis of satellite images	_
(6 hours)	Satellite images	analyze satellite images	Objectives	To understand different geostationary satellite products that cover Nepal region (INSAT, FY2E/F, HIMAWARI, METEOSAT)	
Practical class			Teaching Methods	Audiovisual, practical	_
			Materials	Whiteboard and marker, Multimedia projector, Laptop with ppt, Internet, computer lab	_
			Evaluation	Analyze images from different geostationary satellites Prepare animation of visible images over	_
				Nepal domain. Track thunder cloud direction and identify potential area of heavy rainfall	
			Learning Achievement	Demonstrate how online visualization platform can be used for satellite observation	
			Prescribed/ Basic Book	https://giovanni.gsfc.nasa.gov/giovanni/	

CENTRAL DEPARTMENT OF HYDROLOGY AND METEOROLOGY

TEACHING PLAN

Institute:	Institute of Science and Technology (IOST)	Department:	Central Department of Hydrology and Meteorology (CDMH)
Level:	MSc	Year/Semester:	II
Subject:	Remote sensing and Disaster	Course No.:	Hymet 556
Full Marks:	50	Total Period:	45 lecture hours

Class/ Period	Chapter/ Unit	Learning Outcomes of the Chapter/Unit	Major Components	Description/Particulars	Remarks
10 th (6 hours) Practical class	Analysis of satellite data	The student will be able to handle GEOVANNI online visualization platform	Contents Objectives Teaching	Analysis of satellite data To learn different satellite products (TRMM, GPM, MODIS, sentinel etc). To analysis different meteorological parameters obtained from satellite observation using GEOVANNI online visualization platform. Audiovisual, Online satellite image visualization	
			Methods	system (GEOVANNI)	
			Materials	Whiteboard and marker, Multimedia projector, Laptop with ppt, Internet, computing lab	
			Evaluation	Prepare precipitation map over Nepal using IMERG-GPM satellite date Plot time monthly series of precipitation over Nepal from 2000 to 2019	

Class/ Period	Chapter/ Unit	Learning Outcomes of the Chapter/Unit	Major Components	· ·	
				Plot hovmoller diagram of temperature, pressure and humidity at 85 degrees east longitude	
			Learning Achievement	Demonstrate the ability of different satellite images for real-time weather observations.	
			Prescribed/ Basic Book	https://giovanni.gsfc.nasa.gov/giovanni/	

Subject Teacher: Dr. Dibas Shrestha

CENTRAL DEPARTMENT OF HYDROLOGY AND METEOROLOGY

TEACHING PLAN

Institute:	Institute of Science and Technology (IOST)	Department:	Central Department of Hydrology and Meteorology (CDHM)
Level:	MSc	Year/Semester:	П
Subject:	Micrometeorology	Course No.:	Hymet 552
Full Marks:	50	Total Period:	30 lecture hours

Class/ Period	Chapter/ Unit	Learning Outcomes of the Chapter/Unit	Major Components	Description/Particulars	Remarks
1 st (60	Atmospheric Boundary Layer	Student will be able to understand	Contents	Introduction and scope of micrometeorology	
mins)	Layei	micrometeorology and its scope; energy balance at the earth-	Objectives	To understand micrometeorology To understand scope of micrometeorology	
		atmosphere boundary	Teaching Methods	Didactic questioning, Short lecturing, Peer teaching, Discussion, Audiovisual	
			Materials	Whiteboard and marker, Multimedia projector, Laptop with ppt	
			Evaluation	 What is micrometeorology? What are the scopes of micrometeorology? 	
			Learning Achievement	 Understand micrometeorology Understand scope of micrometeorology 	
			Prescribed/ Basic Book	Munn, R. E., Descriptive Micrometeorology, 1966	

..... Prepared By Approved By

CENTRAL DEPARTMENT OF HYDROLOGY AND METEOROLOGY

TEACHING PLAN

Institute:	Institute of Science and Technology (IOST)	Department:	Central Department of Hydrology and Meteorology (CDHM)
Level:	MSc	Year/Semester:	II
Subject:	Micrometeorology	Course No.:	Hymet 552
Full Marks:	50	Total Period:	30 lecture hours

Class/ Period	Chapter/ Unit	Learning Outcomes of the Chapter/Unit	Major Components	Description/Particulars	Remarks
2 nd (60	Atmospheric Boundary Layer	Student will be able to understand	Contents	Energy balance at the earth- atmosphere boundary	
mins)	Luyer	micrometeorology and its scope;	Objectives	To learn the energy balance at the earth-atmosphere boundary	
		energy balance at the earth- atmosphere	Teaching Methods	Didactic questioning, Short lecturing, Peer teaching, Discussion, Audiovisual	
		boundary	Materials	Whiteboard and marker, Multimedia projector, Laptop with ppt	
			Evaluation	• How is the energy balanced at the earth-atmosphere boundary?	
			Learning Achievement	 Understand the energy balance at the earth-atmosphere boundary 	
			Prescribed/ Basic Book	Munn, R. E., Descriptive Micrometeorology, 1966	

.....

..... Prepared By

Approved By

(Subject Teacher)

(HoD)

CENTRAL DEPARTMENT OF HYDROLOGY AND METEOROLOGY

TEACHING PLAN

Institute:	Institute of Science and Technology (IOST)	Department:	Central Department of Hydrology and Meteorology (CDHM)
Level:	MSc	Year/Semester:	П
Subject:	Micrometeorology	Course No.:	Hymet 552
Full Marks:	50	Total Period:	30 lecture hours

Class/ Period	Chapter/ Unit	Learning Outcomes of the Chapter/Unit	Major Components	Description/Particulars	Remarks
3 rd (60 mins)	Atmospheric Boundary Layer	Student will be able to understand micrometeorology	Contents	Relation between micrometeorology and microclimatology, applications of models in micrometeorological study	
		and its scope; energy balance at the earth- atmosphere boundary	Objectives	To understand the relation between micrometeorology and microclimatology To learn the applications of models in micrometeorological study	
			Teaching Methods	Didactic questioning, Short lecturing, Peer teaching, Discussion, Audiovisual	
			Materials	Whiteboard and marker, Multimedia projector, Laptop with ppt	
			Evaluation	 What is the relation between micrometeorology and microclimatology? What are three main purpose that serve the model in micrometeorology? 	

Class/ Period	Chapter/ Unit	Learning Outcomes of the Chapter/Unit	Major Components	Description/Particulars	Remarks
			Learning Achievement	 Understand the relation between micrometeorology and microclimatology Understand the applications of models in micrometeorological study 	
			Prescribed/ Basic Book	Munn, R. E., Descriptive Micrometeorology, 1966	

CENTRAL DEPARTMENT OF HYDROLOGY AND METEOROLOGY

TEACHING PLAN

Institute:	Institute of Science and Technology (IOST)	Department:	Central Department of Hydrology and Meteorology (CDHM)
Level:	MSc	Year/Semester:	II
Subject:	Micrometeorology	Course No.:	Hymet 552
Full Marks:	50	Total Period:	30 lecture hours

Class/ Period	Chapter/ Unit	Learning Outcomes of the Chapter/Unit	Major Components	Description/Particulars	Remarks
4 th	Energy Balance	Student will be able to	Contents	Spectrum of radiation	
(60 mins)	at the	understand	Objectives	To understand the spectrum of radiation	-
	Earth's surface	spectrum of radiation, effect of temperature	Teaching Methods	Didactic questioning, Short lecturing, Peer teaching, Discussion, Audiovisual	
		on radiant energy, solar energy at	Materials	Whiteboard and marker, Multimedia projector, Laptop with ppt	

Class/ Period	Chapter/ Unit	Learning Outcomes of the Chapter/Unit	Major Components	Description/Particulars	Remarks
		the outer boundary of the	Evaluation	What is the spectrum of radiation?	
		atmosphere, depletion of solar	Learning Achievement	Understand the spectrum of radiation	
	energy by the atmosphere, optical air mass; reflection, scattering and albedo of earth's surface.	Prescribed/ Basic Book	Munn, R. E., Descriptive Micrometeorology, 1966		

.....

..... Prepared By Approved By

CENTRAL DEPARTMENT OF HYDROLOGY AND METEOROLOGY

TEACHING PLAN

Institute:	Institute of Science and Technology (IOST)	Department:	Central Department of Hydrology and Meteorology (CDHM)
Level:	MSc	Year/Semester:	П
Subject:	Micrometeorology	Course No.:	Hymet 552
Full Marks:	50	Total Period:	30 lecture hours

Class/ Period	Chapter/ Unit	Learning Outcomes of the Chapter/Unit	Major Components	Description/Particulars	Remarks
5 th (60 mins)	Energy Balance at the Earth's	Student will be able to understand spectrum of	Contents Objectives	Effect of temperature on radiant energy To understand the effect of temperature on radiant energy	
	surface	radiation, effect of temperature on radiant energy, solar energy at	Teaching Methods Materials	Didactic questioning, Short lecturing, Peer teaching, Discussion, Audiovisual Whiteboard and marker, Multimedia	
		the outer boundary of the atmosphere, depletion of solar	Evaluation	 projector, Laptop with ppt What are the effects of temperature on radiant energy? 	
		energy by the atmosphere, optical air mass; reflection,	Learning Achievement Prescribed/ Basic	Understand the effect of temperature on radiant energy Munn, R. E., Descriptive	
		scattering and albedo of earth's surface.	Book	Micrometeorology, 1966	

..... Prepared By Approved By

CENTRAL DEPARTMENT OF HYDROLOGY AND METEOROLOGY

TEACHING PLAN

Institute:	Institute of Science and Technology (IOST)	Department:	Central Department of Hydrology and Meteorology (CDHM)
Level:	MSc	Year/Semester:	П
Subject:	Micrometeorology	Course No.:	Hymet 552
Full Marks:	50	Total Period:	30 lecture hours

Class/ Period	Chapter/ Unit	Learning Outcomes of the Chapter/Unit	Major Components	Description/Particulars	Remarks
6 th and 7 th (120 mins)	Energy Balance at the Earth's surface	Student will be able to understand spectrum of radiation, effect	Contents	Solar energy at the outer boundary of the atmosphere, Depletion of solar energy by the atmosphere	
		of temperature on radiant energy, solar energy at the outer boundary of the atmosphere,	Objectives	To understand the solar energy at the outer boundary of the atmosphere, To understand the depletion of solar energy by the atmosphere	
		depletion of solar energy by the atmosphere, optical air mass; reflection, scattering and	Teaching Methods Materials	Didactic questioning, Short lecturing, Peer teaching, Discussion, Audiovisual Whiteboard and marker, Multimedia	
			Evaluation	projector, Laptop with pptHow are energy balanced at the	
				 earth's atmosphere boundary? How is solar energy depleted by the atmosphere? 	

Class/ Period	Chapter/ Unit	Learning Outcomes of the Chapter/Unit	Major Components	Description/Particulars	Remarks
		albedo of earth's surface.	Learning Achievement	 Understand the energy balanced at the earth's atmosphere boundary Understand the depletion of solar energy by the atmosphere 	
			Prescribed/ Basic Book	Munn, R. E., Descriptive Micrometeorology, 1966	

CENTRAL DEPARTMENT OF HYDROLOGY AND METEOROLOGY

TEACHING PLAN

Institute:	Institute of Science and Technology (IOST)	Department:	Central Department of Hydrology and Meteorology (CDHM)
Level:	MSc	Year/Semester:	П
Subject:	Micrometeorology	Course No.:	Hymet 552
Full Marks:	50	Total Period:	30 lecture hours

Class/ Period	Chapter/ Unit	Learning Outcomes of the Chapter/Unit	Major Components	Description/Particulars	Remarks
8 th (60	Energy Balance at the	Student will be able to understand	Contents	Optical air mass; reflection, scattering and albedo of earth's surface	
mins)	Earth's spectrum of surface radiation, effect of temperature	Objectives	To understand the optical air mass; reflection, scattering and albedo of earth's surface		

Class/	Chapter/	Learning	Major Components	Description/Particulars	Remarks
Period	Unit	Outcomes of the Chapter/Unit			
		on radiant energy, solar energy at the outer boundary of the	Teaching Methods Materials	Didactic questioning, Short lecturing, Peer teaching, Discussion, Audiovisual Whiteboard and marker, Multimedia	
		atmosphere, depletion of solar	Evaluation	projector, Laptop with pptWhat is optical air mass?	
		energy by the atmosphere, optical air mass;		• What are the effects of reflection, scattering and albedo of the earth's surface?	
		reflection, scattering and albedo of earth's surface.	Learning Achievement	 Understand optical air mass Understand the effect of reflection, scattering and albedo of the earth's surface 	
			Prescribed/ Basic Book	Munn, R. E., Descriptive Micrometeorology, 1966	

.....

..... Prepared By

Approved By

TRIBHUVAN UNIVERSITY

CENTRAL DEPARTMENT OF HYDROLOGY AND METEOROLOGY

TEACHING PLAN

Institute:	Institute of Science and Technology (IOST)	Department:	Central Department of Hydrology and Meteorology (CDHM)
Level:	MSc	Year/Semester:	II
Subject:	Micrometeorology	Course No.:	Hymet 552
Full Marks:	50	Total Period:	30 lecture hours

Class/	Chapter/	Learning	Major	Description/Particulars	Remarks
Period	Unit	Outcomes of the Chapter/Unit	Components		
9 th and 10 th (120 mins)	Radiation process on the Earth's surface	Student will be able to understand the definition of emissivity and laws of radiation, short wave radiation measurement, long wave radiation from the earth's surface, net radiation and its estimation,	Contents Objectives	Definition of emissivity and laws of radiation, short wave radiation measurement, long wave radiation from the earth's surface, net radiation and its estimation, evaporation (latent heat flux) from the earth's surface To understand the emissivity and laws of radiation To understand , short wave radiation and its measurement To understand long wave radiation from the earth's surface To understand net radiation and its estimation	
		evaporation from the earth's surface, sensible heat flux and its estimation, precipitation heat	Teaching Methods	To understand evaporation from the earth's surface Didactic questioning, Short lecturing, Peer teaching, Discussion, Audiovisual	
		flux and its measurement, soil	Materials	Whiteboard and marker, Multimedia projector, Laptop with ppt	
		temperature and its characteristics, ground heat flux and its determination, definition and calculation of thermal conductivity and thermal diffusivity of the soil layer, soil heat transformation: Fourier heat conductionEvaluationVersited/Frescribed/	 Explain emissivity and laws of radiation How is short wave radiation measured? Discuss on the long wave radiation from the earth's surface. How is the net radiation estimated? Discuss on the evaporation from the earth's surface Understand emissivity and laws of radiation Understand emissivity and laws of radiation Understand long wave radiation and its measurement Understand net radiation and its estimation Understand evaporation from the earth's surface Munderstand evaporation from the earth's surface 		
		theory.	Basic Book		

..... Prepared By Approved By (Subject Teacher)

(HoD)

CENTRAL DEPARTMENT OF HYDROLOGY AND METEOROLOGY

TEACHING PLAN

	Department:	Central Department of Hydrology and Meteorology (CDHM)
	Year/Semester:	II
eorology	Course No.:	Hymet 552
	Total Period:	30 lecture hours
	gy (IOST)	Year/Semester: ceorology Course No.:

Class/	Chapter/	Learning	Major	Description/Particulars	Remarks
Period	Unit	Outcomes of the Chapter/Unit	Components		
11 th and 12 th (120 mins)	Radiation process on the Earth's surface	Student will be able to understand the definition of emissivity and laws of radiation, short wave radiation measurement, long wave radiation from the earth's surface, net radiation and its estimation, evaporation from	Contents Objectives	Sensible heat flux and its estimation, precipitation heat flux and its measurement, soil temperature and its characteristics, ground heat flux and its determination To understand the sensible heat flux and its estimation To understand the precipitation heat flux and its measurement To understand emissivity and laws of radiation To understand the soil temperature and its characteristics To understand the ground heat flux and its	
		the earth's surface, sensible heat flux and its estimation,	Teaching Methods	determination Didactic questioning, Short lecturing, Peer teaching, Discussion, Audiovisual	

Class/	Chapter/ Unit	Learning Outcomes of the	Major Components	Description/Particulars	Remarks
Period		Chapter/Unit precipitation heat flux and its	Materials	Whiteboard and marker, Multimedia projector, Laptop with ppt	
		measurement, soil temperature and its characteristics, ground heat flux and its determination,	Evaluation	 How do we estimate sensible heat flux? How do we measure precipitation heat flux? Explain emissivity and laws of radiation. What are the characteristics of soil temperature? How do we determine ground heat flux? 	
		definition and calculation of thermal conductivity and thermal diffusivity of the soil layer, soil heat transformation:	Learning Achievement	 Understand the sensible heat flux and its estimation Understand the precipitation heat flux and its measurement Understand emissivity and laws of radiation Understand the soil temperature and its characteristics Understand the ground heat flux and its determination 	
		Fourier heat conduction theory.	Prescribed/ Basic Book	Munn, R. E., Descriptive Micrometeorology, 1966	

Prepared By Approved By (Subject Teacher)

CENTRAL DEPARTMENT OF HYDROLOGY AND METEOROLOGY

TEACHING PLAN

Institute:	Institute of Science and Technology (IOST)	Department:	Central Department of Hydrology and Meteorology (CDHM)
Level:	MSc	Year/Semester:	П
Subject:	Micrometeorology	Course No.:	Hymet 552
Full Marks:	50	Total Period:	30 lecture hours

Class/ Period	Chapter/ Unit	Learning Outcomes of the Chapter/Unit	Major Components	Description/Particulars	Remarks
13 th (60 mins)	Radiation process on the Earth's	Student will be able to understand the definition of	Contents	Definition and calculation of thermal conductivity and thermal diffusivity of the soil layer, soil heat transformation: Fourier heat conduction theory.	
	surface	emissivity and laws of radiation, short wave radiation measurement, long wave	Objectives	To understand definition and calculation of thermal conductivity and thermal diffusivity of the soil layer To understand soil heat transformation: Fourier heat conduction theory	
		radiation from the earth's surface,	Teaching Methods	Didactic questioning, Short lecturing, Peer teaching, Discussion, Audiovisual	
		net radiation and its estimation, evaporation from	Materials	Whiteboard and marker, Multimedia projector, Laptop with ppt	
		the earth's surface, sensible heat flux and its	Evaluation	 Explain about the heat transfer in the solid surface. Derive the Fourier heat conduction equation. 	
		estimation, precipitation heat	Learning Achievement	 Understand definition and calculation of thermal conductivity and thermal diffusivity of the soil layer 	

Class/	Chapter/	Learning	Major	Description/Particulars	Remarks
Period	Unit	Outcomes of the Chapter/Unit	Components		
		Chapter/Onit			
		flux and its		Understand soil heat transformation	
		measurement, soil		Understand Fourier heat conduction theory	
		temperature and	Prescribed/	Munn, R. E., Descriptive Micrometeorology, 1966	
		its characteristics,	Basic Book		
		ground heat flux			
		and its			
		determination,			
		definition and			
		calculation of			
		thermal			
		conductivity and			
		thermal diffusivity			
		of the soil layer,			
		soil heat			
		transformation:			
		Fourier heat			
		conduction			
		theory.			

Prepared By Approved By (Subject Teacher)

CENTRAL DEPARTMENT OF HYDROLOGY AND METEOROLOGY

TEACHING PLAN

Institute:	Institute of Science and Technology (IOST)	Department:	Central Department of Hydrology and Meteorology (CDHM)
Level:	MSc	Year/Semester:	II
Subject:	Micrometeorology	Course No.:	Hymet 552
Full Marks:	50	Total Period:	30 lecture hours

Class/	Chapter/	Learning Outcomes	Major	Description/Particulars	Remarks
Period	Unit	of the Chapter/Unit	Components		
Period 14 th (60 mins)	Atmospheric elements over homogenous surface	Student will be able to understand Monin Obukhov and Richardson number and their use, friction velocity and roughness length, viscosity, drag coefficient, surface shearing stress and wind shear, definition and determination of bulk coefficient and	Contents Objectives Teaching Methods Materials Evaluation Learning Achievement	 Monin Obukhov and Richardson number and their use To understand the Monin Obukhov and Richardson number and their use Didactic questioning, Short lecturing, Peer teaching, Discussion, Audiovisual Whiteboard and marker, Multimedia projector, Laptop with ppt Describe the Monin Obukhov and Richardson number. Understand Monin Obukhov and Richardson number and their use 	
		momentum eddy diffusivity, mean wind and vertical wind profile in the absence of buoyancy as well as in a non-adiabatic	Prescribed/ Basic Book	Munn, R. E., Descriptive Micrometeorology, 1966	

Class/	Chapter/	Learning Outcomes	Major	Description/Particulars	Remarks
Period	Unit	of the Chapter/Unit	Components		
		atmosphere, viscous dissipation and adiabatic wind profile, eddy correlation method for measuring turbulent heat fluxes.			

..... Prepared By Approved By (Subject Teacher)

CENTRAL DEPARTMENT OF HYDROLOGY AND METEOROLOGY

TEACHING PLAN

Institute:	Institute of Science and Technology (IOST)	Department:	Central Department of Hydrology and Meteorology (CDHM)
Level:	MSc	Year/Semester:	П
Subject:	Micrometeorology	Course No.:	Hymet 552
Full Marks:	50	Total Period:	30 lecture hours

Class/	Chapter/	Learning Outcomes	Major	Description/Particulars	Remarks
Period	Unit	of the Chapter/Unit	Components		
15 th , 16 th and 17 th (180 mins)	Atmospheric elements over homogenous surface	Student will be able to understand Monin Obukhov and Richardson number and their use, friction velocity and roughness length, viscosity, drag coefficient, surface shearing stress and wind shear, definition and determination of bulk coefficient and momentum eddy diffusivity, mean wind and vertical wind profile in the absence of buoyancy as well as	Contents Objectives Teaching Methods Materials	 Friction velocity and roughness length, viscosity, drag coefficient, surface shearing stress and wind shear, definition and determination of bulk coefficient and momentum eddy diffusivity To understand the friction velocity and roughness length To understand the viscosity, drag coefficient, surface shearing stress and wind shear To understand the definition and determination of bulk coefficient and momentum eddy diffusivity Didactic questioning, Short lecturing, Peer teaching, Discussion, Audiovisual Whiteboard and marker, Multimedia projector, Laptop with ppt 	

PeriodUnitof the Chapter/UnitComponentsIn a non-adiabatic atmosphere, viscous dissipation and adiabatic wind profile, eddy correlation method for measuring turbulent heat fluxes.Evaluation• Define friction velocity and roughness length. • Describe viscosity, drag coefficient, surface shearing stress and wind shear • Describe bulk coefficient and momentum eddy diffusivityImage: Describe to the stress of the stress and wind shear • Describe bulk coefficient and momentum eddy diffusivityImage: Describe to the stress of the s	Class/	Chapter/	Learning Outcomes	Major	Description/Particulars	Remarks
atmosphere, viscous dissipation and adiabatic wind profile, eddy correlation method for measuring turbulent heatatmosphere, viscous length.length.• Describe viscosity, drag coefficient, surface shearing stress and wind shear • Describe bulk coefficient and momentum eddy diffusivity•• Describe viscosity, drag coefficient, surface shearing stress and wind shear • Describe bulk coefficient and momentum eddy diffusivity	Period	Unit	of the Chapter/Unit	Components		
wind shear Understand bulk coefficient and momentum eddy diffusivity Prescribed/ Munn, R. E., Descriptive Micrometeorology, Basic Book 1966			atmosphere, viscous dissipation and adiabatic wind profile, eddy correlation method for measuring turbulent heat	Learning Achievement Prescribed/	 length. Describe viscosity, drag coefficient, surface shearing stress and wind shear Describe bulk coefficient and momentum eddy diffusivity Understand the friction velocity and roughness length Understand the viscosity, drag coefficient, surface shearing stress and wind shear Understand bulk coefficient and momentum eddy diffusivity Munn, R. E., Descriptive Micrometeorology, 	

..... Prepared By Approved By (Subject Teacher)

CENTRAL DEPARTMENT OF HYDROLOGY AND METEOROLOGY

TEACHING PLAN

Institute:	Institute of Science and Technology (IOST)	Department:	Central Department of Hydrology and Meteorology (CDHM)
Level:	MSc	Year/Semester:	П
Subject:	Micrometeorology	Course No.:	Hymet 552
Full Marks:	50	Total Period:	30 lecture hours

Class/	Chapter/	Learning Outcomes	Major	Description/Particulars	Remarks
Period	Unit	of the Chapter/Unit	Components		
18 th , 19 th and 20 th (180 mins)	Atmospheric elements over homogenous surface	Student will be able to understand Monin Obukhov and Richardson number and their use, friction velocity and roughness length, viscosity, drag coefficient, surface shearing stress and wind shear, definition and determination of bulk coefficient and momentum eddy diffusivity, mean wind and vertical wind profile in the absence of buoyancy as well as	Contents Objectives Teaching Methods Materials	 Mean wind and vertical wind profile in the absence of buoyancy as well as in a non-adiabatic atmosphere, viscous dissipation and adiabatic wind profile, eddy correlation method for measuring turbulent heat fluxes To understand the mean wind and vertical wind profile in the absence of buoyancy as well as in a non-adiabatic atmosphere To understand viscous dissipation and adiabatic wind profile To understand eddy correlation method for measuring turbulent heat fluxes Didactic questioning, Short lecturing, Peer teaching, Discussion, Audiovisual Whiteboard and marker, Multimedia projector, Laptop with ppt 	

Class/	Chapter/	Learning Outcomes	Major	Description/Particulars	Remarks
Period	Unit	of the Chapter/Unit	Components		
		in a non-adiabatic atmosphere, viscous dissipation and adiabatic wind profile, eddy correlation method for measuring turbulent heat fluxes.	Evaluation Learning Achievement Prescribed/ Basic Book	 Describe the equation of vertical wind profile in the absence of buoyancy Describe the viscous dissipation and adiabatic wind profile Describe the eddy correlation method for measuring turbulent heat fluxes Understand the mean wind and vertical wind profile in the absence of buoyancy as well as in a non-adiabatic atmosphere Understand the viscous dissipation and adiabatic wind profile Understand the viscous dissipation and adiabatic wind profile Understand the viscous dissipation and adiabatic wind profile Understand eddy correlation method for measuring turbulent heat fluxes Munn, R. E., Descriptive Micrometeorology, 1966 	-

..... Prepared By

Approved By

(Subject Teacher)

CENTRAL DEPARTMENT OF HYDROLOGY AND METEOROLOGY

TEACHING PLAN

Institute:	Institute of Science and Technology (IOST)	Department:	Central Department of Hydrology and Meteorology (CDHM)
Level:	MSc	Year/Semester:	П
Subject:	Micrometeorology	Course No.:	Hymet 552
Full Marks:	50	Total Period:	30 lecture hours

Class/	Chapter/ Unit	Learning Outcomes of	Major	Description/Particulars	Remarks
Period		the Chapter/Unit	Components		
21 st and 22 nd (120 mins)	Turbulence and wind flow over homogeneous surface	Nature and causes of the turbulence, spectrum of turbulence, Kolmogorov's similarity theory and its application, dimensional analysis and similarity theory, measurement process of different parameters/coefficients in turbulence, local wind flows in valleys and cities, wind flow around cylindrical and irregular objectives, wind flow profiles over	Contents Objectives Teaching Methods	 Nature and causes of the turbulence, spectrum of turbulence, Kolmogorov's similarity theory and its application, dimensional analysis and similarity theory To understand the nature and causes of the turbulence To understand the spectrum of turbulence To understand the Kolmogorov's similarity theory and its application To understand the dimensional analysis and similarity theory Didactic questioning, Short lecturing, Peer teaching, Discussion, Audiovisual 	

Class/ Period	Chapter/ Unit	Learning Outcomes of the Chapter/Unit	Major Components	Description/Particulars	Remarks
		a canopy, plant cover or forest, temperature and humidity over the	Materials	Whiteboard and marker, Multimedia projector, Laptop with ppt	
		water surface.	Evaluation	 Describe the nature and cause of turbulence. Describe the Kolmogorov similarity theory. Describe the dimensional analysis and similarity theory. 	
			Learning Achievement	 Understand the nature and causes of the turbulence Understand the spectrum of turbulence Undrestand the Kolmogorov's similarity theory and its application Understand the the dimensional analysis and similarity theory 	
			Prescribed/	Munn, R. E., Descriptive	
			Basic Book	Micrometeorology, 1966	

Approved By

(HoD)

(Subject Teacher)

CENTRAL DEPARTMENT OF HYDROLOGY AND METEOROLOGY

TEACHING PLAN

Institute:	Institute of Science and Technology (IOST)	Department:	Central Department of Hydrology and Meteorology (CDHM)
Level:	MSc	Year/Semester:	П
Subject:	Micrometeorology	Course No.:	Hymet 552
Full Marks:	50	Total Period:	30 lecture hours

Class/	Chapter/ Unit	Learning Outcomes of	Major	Description/Particulars	Remarks
Period		the Chapter/Unit	Components		
23 rd and 24 th (120 mins)	and 24thand wind flowthe turbulence, spectrum of(120 mins)surfaceKolmogorov's similarity	Contents	Measurement process of different parameters/coefficients in turbulence, local wind flows in valleys and cities, wind flow around cylindrical and irregular objects		
		theory and its application, dimensional analysis and similarity theory, measurement process of different parameters/coefficients in turbulence, local	Objectives	To understand the measurement process of different parameters/coefficients in turbulence To understand the local wind flows in valleys and cities, wind flow around cylindrical and irregular objects	-
		wind flows in valleys and cities, wind flow around cylindrical and	Teaching Methods	Didactic questioning, Short lecturing, Peer teaching, Discussion, Audiovisual	
		irregular objects, wind flow profiles over a	Materials	Whiteboard and marker, Multimedia projector, Laptop with ppt	
		canopy, plant cover or forest, temperature and humidity over the	Evaluation	• Describe the measurement process of different parameters in turbulance.	1

Class/ Period	Chapter/ Unit	Learning Outcomes of the Chapter/Unit	Major Components	Description/Particulars	Remarks
		water surface.	Learning Achievement Prescribed/ Basic Book	 Describe the local wind flows in valleys and cities. Describe the wind flow around cylindrical and irregular objects. Understand the measurement process of different parameters/coefficients in turbulence Understand the local wind flows in valleys and cities Undrestand the wind flow around cylindrical and irregular objects Munn, R. E., Descriptive Micrometeorology, 1966 	

..... Prepared By Approved By (Subject Teacher)

CENTRAL DEPARTMENT OF HYDROLOGY AND METEOROLOGY

TEACHING PLAN

Institute of Science and Technology (IOST)	Department:	Central Department of Hydrology and Meteorology (CDHM)
MSc	Year/Semester:	П
Micrometeorology	Course No.:	Hymet 552
50	Total Period:	30 lecture hours
	Technology (IOST) MSc	Technology (IOST) MSc Year/Semester: Micrometeorology Course No.:

Class/ Period	Chapter/ Unit	Learning Outcomes of the Chapter/Unit	Major Components	Description/Particulars	Remarks
i chou					
25 th (60 mins)	Turbulence and wind flow over	Nature and causes of the turbulence, spectrum of	Contents	Wind flow profiles over a canopy, plant cover or forest, temperature and humidity over the water surface.	
·	homogeneous surface	turbulence, Kolmogorov's similarity theory and its application, dimensional analysis and similarity theory,	Objectives	To understand the wind flow profiles over a canopy, plant cover or forest To understand the temperature and humidity over the water surface.	
		measurement process of different	Teaching Methods	Didactic questioning, Short lecturing, Peer teaching, Discussion, Audiovisual	
		parameters/coefficients in turbulence, local wind flows in valleys	Materials	Whiteboard and marker, Multimedia projector, Laptop with ppt	-
	and cities, wind flow around cylindrical and irregular objectives, wind flow profiles over a canopy, plant cover	Evaluation	 Explain the wind flow profiles over a canopy Explain the wind flow profiles over a plant cover Explain the wind flow profiles over a forest 		

Class/ Period	Chapter/ Unit	Learning Outcomes of the Chapter/Unit	Major Components	Description/Particulars	Remarks
		or forest, temperature and humidity over the water surface.	Learning Achievement	 Understand the wind flow profiles over a canopy, plant cover or forest Understand the temperature and humidity over the water surface 	
			Prescribed/ Basic Book	Munn, R. E., Descriptive Micrometeorology, 1966	

CENTRAL DEPARTMENT OF HYDROLOGY AND METEOROLOGY

TEACHING PLAN

Institute:	Institute of Science and Technology (IOST)	Department:	Central Department of Hydrology and Meteorology (CDHM)
Level:	MSc	Year/Semester:	II
Subject:	Micrometeorology	Course No.:	Hymet 552
Full Marks:	50	Total Period:	30 lecture hours

Class/ Period	Chapter/ Unit	Learning Outcomes of the Chapter/Unit	Major Components	Description/Particulars	Remarks
26 th and 27 th	Micrometeorological elements within the forest	Air temperature, canopy	Contents	Air temperature, canopy temperature, soil temperature, wind velocities and humidity in the plant	
27***	lorest	temperature, soil temperature, wind		cover	

Class/ Period	Chapter/ Unit	Learning Outcomes of the Chapter/Unit	Major Components	Description/Particulars	Remarks
(120		velocities and	Objectives	To understand the air temperature in	
mins)		humidity in the		the plant cover	
		plant cover, energy		To understand the canopy	
		balance of a forest and lake surface,		temperature in the plant cover	
		heat storage and		To understand the soil temperature	
		transformation in the forest, energy		in the plant cover	
		balance		To understand the wind velocities	
		component within the plant cover.		and humidity in the plant cover	
			Teaching	Didactic questioning, Short lecturing,	
			Methods	Peer teaching, Discussion, Audiovisual	
			Materials	Whiteboard and marker, Multimedia	
			- - - · · ·	projector, Laptop with ppt	-
			Evaluation	• Explain the air temperature in the plant cover.	
				 Explain the canopy temperature in the plant cover. 	
				 Expain the soil temperature in the plant cover 	
				 Explain the wind velocities and humidity in the plant cover. 	
			Learning	Understand the air temperature,	-
			Achievement	canopy temperature, soil	
				temperature, wind velocities and humidity in the plant cover	
			Prescribed/	Munn, R. E., Descriptive	-
			Basic Book	Micrometeorology, 1966	

..... Prepared By Approved By (Subject Teacher)

CENTRAL DEPARTMENT OF HYDROLOGY AND METEOROLOGY

TEACHING PLAN

Institute:	Institute of Science and Technology (IOST)	Department:	Central Department of Hydrology and Meteorology (CDHM)
Level:	MSc	Year/Semester:	П
Subject:	Micrometeorology	Course No.:	Hymet 552
Full Marks:	50	Total Period:	30 lecture hours

Class/ Period	Chapter/ Unit	Learning Outcomes of the Chapter/Unit	Major Components	Description/Particulars	Remarks
28 th , 29 th and 30 th (180 mins)	Micrometeorological elements within the forest	Air temperature, canopy temperature, soil temperature, wind velocities and humidity in the plant cover, energy balance of a forest and lake surface, heat storage and transformation in the forest, energy balance component within the plant cover.	Contents Objectives Teaching Methods Materials	Energy balance of a forest and lake surface, heat storage and transformation in the forest, energy balance component within the plant cover. To understand the energy balance of a forest and lake surface To understand the heat storage and transformation in the forest To understand the energy balance component within the plant cover Didactic questioning, Short lecturing, Peer teaching, Discussion, Audiovisual Whiteboard and marker, Multimedia	
				projector, Laptop with ppt	

Class/	Chapter/ Unit	Learning Outcomes of the	Major Components	Description/Particulars	Remarks
Period		Chapter/Unit			
			Evaluation Learning Achievement Prescribed/ Basic Book	 Explain the energy balance of a forest. Explain the energy balance of a lake surface. Explain the heat storage and transformation in the forest. Explain the temperature in the plant cover. Explain the energy balance component within the plant cover. Understand the the energy balance of a forest and lake surface Understand the heat storage and transformation in the forest. Understand the heat storage and transformation in the forest Understand the heat storage and transformation in the forest Understand the energy balance component within the plant cover 	

Prepared By: Dr. Sunil Acharya (Subject Teacher)

CENTRAL DEPARTMENT OF HYDROLOGY AND METEOROLOGY

TEACHING PLAN

Institute:	Institute of Science and Technology (IOST)	Department:	Central Department of Hydrology and Meteorology (CDHM)
Level:	MSc	Year/Semester:	Ш
Subject:	Paleo-climatology (Isotope studies)	Course No.:	Hymet 603
Full Marks:	50	Total Period:	30 lecture hours

Class/ Period	Chapter/ Unit	Learning Outcomes of the Chapter/Unit	Major Components	Description/Particulars	Remarks	
1 st (60 mins)	lsotope study	Introduction of stable isotopes, definition, fundamental	Contents	Introduction of stable isotopes, definition, fundamental composition of stable isotopes		
		composition of stable isotopes, Standard Mean	Objectives Teaching Methods	To understand stable isotopes Didactic questioning, Short lecturing, Peer teaching, Discussion, Audiovisual	-	
		Ocean Water(SMOW) and Vienna Standard Mean	Materials	Whiteboard and marker, Multimedia projector, Laptop with ppt		
			Ocean Water(V- SMOW), relative abundances of	Evaluation	 What are stable isotopes? Discuss on the relative abundance of stable water isotopes. 	
		hydrogen and oxygen isotopes,	Learning Achievement	Understand stable water isotopes	-	
		historical records of stable isotopes in Nepal,	Prescribed/ Basic Book	Environmental Isotopes in the Hydrological Cycle, IAEA		

Class/ Period	Chapter/ Unit	Learning Outcomes of the Chapter/Unit	Major Components	Description/Particulars	Remarks
		IAEA,GNIP and TNIP data interpretation		Clark, I., Fritz, P., Environmental isotopes in hydrogeology. Lewis Publishers, Boca Raton, Fla (1997).	

CENTRAL DEPARTMENT OF HYDROLOGY AND METEOROLOGY

TEACHING PLAN

Institute:	Institute of Science and Technology (IOST)	Department:	Central Department of Hydrology and Meteorology (CDHM)
Level:	MSc	Year/Semester:	ш
Subject:	Paleo-climatology (Isotope studies)	Course No.:	Hymet 603
Full Marks:	50	Total Period:	30 lecture hours

Class/ Period	Chapter/ Unit	Learning Outcomes of the Chapter/Unit	Major Components	Description/Particulars	Remarks
2 nd (60 mins)	Isotope study	Introduction of stable isotopes, definition, fundamental composition of	Contents	Standard Mean Ocean Water (SMOW) and Vienna Standard Mean Ocean Water (V-SMOW), relative abundances of hydrogen and oxygen isotopes	
	stable isotopes, Standard Mean Ocean	Objectives	To understand Standard Mean Ocean Water (SMOW) and Vienna Standard Mean Ocean Water (V-SMOW)		

Class/ Period	Chapter/ Unit	Learning Outcomes of the Chapter/Unit	Major Components	Description/Particulars	Remarks
		Water(SMOW) and Vienna Standard Mean		To understand relative abundances of hydrogen and oxygen isotopes	
		Ocean Water(V- SMOW), relative	Teaching Methods	Didactic questioning, Short lecturing, Peer teaching, Discussion, Audiovisual	
		abundances of hydrogen and oxygen isotopes,	Materials	Whiteboard and marker, Multimedia projector, Laptop with ppt	
		historical records of stable isotopes in Nepal,	Evaluation	 What are SMOW and VSMOW? Discuss on the relative abundance of hydrogen and oxygen isotopes 	
	IA TN	IAEA,GNIP and TNIP data	Learning Achievement	 Understand SMOW and VSMOW Understand relative abundances of hydrogen and oxygen isotopes 	
		interpretation	Prescribed/ Basic Book	Environmental Isotopes in the Hydrological Cycle, IAEA	
				Clark, I., Fritz, P., Environmental isotopes in hydrogeology. Lewis Publishers, Boca Raton, Fla (1997).	

TRIBHUVAN UNIVERSITY CENTRAL DEPARTMENT OF HYDROLOGY AND METEOROLOGY

TEACHING PLAN

Institute:	Institute of Science and Technology (IOST)	Department:	Central Department of Hydrology and Meteorology (CDHM)
Level:	MSc	Year/Semester:	Ш
Subject:	Paleo-climatology (Isotope studies)	Course No.:	Hymet 603
Full Marks:	50	Total Period:	30 lecture hours

Detail Plan of Action for Course Facilitation

Class/ Period	Chapter/ Unit	Learning Outcomes of the Chapter/Unit	Major Components	Description/Particulars	Remarks
3 rd (60 mins)	Isotope study	Introduction of stable isotopes, definition, fundamental	Contents	Historical records of stable isotopes in Nepal, IAEA,GNIP and TNIP data interpretation	
,		composition of stable isotopes, Standard Mean Ocean	Objectives	To understand historical records of stable isotopes in Nepal To interpretate IAEA,GNIP and TNIP data	
		Water(SMOW) and Vienna Standard Mean	Teaching Methods	Didactic questioning, Short lecturing, Peer teaching, Discussion, Audiovisual	
		Ocean Water(V- SMOW), relative	Materials	Whiteboard and marker, Multimedia projector, Laptop with ppt	
		abundances of hydrogen and oxygen isotopes, historical records of stable isotopes	Evaluation Learning Achievement	 Discuss on historical records of stable isotopes in Nepal. Interpretate the given GNIP datasets. Understand historical records of stable isotopes in Nepal 	
		in Nepal, IAEA,GNIP and	Prescribed/ Basic	Understand the data interpretation from GNIP datasets	
		TNIP data interpretation	Book	Environmental Isotopes in the Hydrological Cycle, IAEA Clark, I., Fritz, P., Environmental isotopes	
				in hydrogeology. Lewis Publishers, Boca Raton, Fla (1997).	

TRIBHUVAN UNIVERSITY

CENTRAL DEPARTMENT OF HYDROLOGY AND METEOROLOGY

TEACHING PLAN

Institute:	Institute of Science and Technology (IOST)	Department:	Central Department of Hydrology and Meteorology (CDHM)
Level:	MSc	Year/Semester:	Ш
Subject:	Paleo-climatology (Isotope studies)	Course No.:	Hymet 603
Full Marks:	50	Total Period:	30 lecture hours

Class/ Period	Chapter/ Unit	Learning Outcomes of the Chapter/Unit	Major Components	Description/Particulars	Remarks
4 th and 5 th (120 mins)	Measurement of stable isotopes	Precipitation and water isotopes sample collection and laboratory measurement, precipitation and rain water samples, river water stable isotopes, precipitation water samples	Contents Objectives	Precipitation and water isotopes sample collection and laboratory measurement, precipitation and rain water samples, river water stable isotopes, precipitation water samples collection procedures, laboratory analysis and isotope data recording To understand the procedure of river and precipitation sample collection To understand the procedure of laboratory analysis	
		collection procedures, laboratory	Teaching Methods Materials	Didactic questioning, Short lecturing, Peer teaching, Discussion, Audiovisual Whiteboard and marker, Multimedia	_
		analysis and isotope data recording	Evaluation Learning Achievement	 What are the procedures to collect river/precipitation water sample collection? How are samples analysed in the laboratory? Why are internal laboratory standards (ILS) necessary? Understand the procedure of river and precipitation sample collection Understand the procedure of laboratory analysis 	

Class/ Period	Chapter/ Unit	Learning Outcomes of the Chapter/Unit	Major Components	Description/Particulars	Remarks
			Prescribed/ Basic Book	Environmental Isotopes in the Hydrological Cycle, IAEA Clark, I., Fritz, P., Environmental isotopes in	
				hydrogeology. Lewis Publishers, Boca Raton, Fla (1997).	

..... Prepared By Approved By

(Subject Teacher)

CENTRAL DEPARTMENT OF HYDROLOGY AND METEOROLOGY

TEACHING PLAN

Institute:	Institute of Science and Technology (IOST)	Department:	Central Department of Hydrology and Meteorology (CDHM)
Level:	MSc	Year/Semester:	Ш
Subject:	Paleo-climatology (Isotope studies)	Course No.:	Hymet 603
Full Marks:	50	Total Period:	30 lecture hours

Class/	Chapter/ Unit	Learning Outcomes of the	Major Components	Description/Particulars	Remarks
Period	Onit	Chapter/Unit	components		
6 th 7 th and 8 th (120 mins)	Estimation methods	Estimation of stable isotopes using Araguas, Craig and Dansgaard	Contents Objectives	Estimation of stable isotopes using Araguas, Craig and Dansgaard equations, also using some theoretical aspects empirical relations To understand the estimation of stable isotopes using Araguas, Craig and Dansgaard	
		equations, also using some theoretical aspects empirical relations		equations To understand the estimation of stable isotopes using empirical relations	
			Teaching Methods	Didactic questioning, Short lecturing, Peer teaching, Discussion, Audiovisual	
			Materials	Whiteboard and marker, Multimedia projector, Laptop with ppt	
			Evaluation	 Estimate the stable isotopes using Araguas, Craig and Dansgaard equations. Estimate the stable isotopes using empirical formulas. 	

Class/ Period	Chapter/ Unit	Learning Outcomes of the Chapter/Unit	Major Components	Description/Particulars	Remarks
			Learning Achievement Prescribed/ Basic Book	 Understand the estimation of stable isotopes using Araguas, Craig and Dansgaard equations. Understand the estimation of stable isotopes using some empirical formulas. Environmental Isotopes in the Hydrological Cycle, IAEA Clark, I., Fritz, P., Environmental isotopes in hydrogeology. Lewis Publishers, Boca Raton, Fla (1997). 	

CENTRAL DEPARTMENT OF HYDROLOGY AND METEOROLOGY

TEACHING PLAN

Institute:	Institute of Science and Technology (IOST)	Department:	Central Department of Hydrology and Meteorology (CDHM)
Level:	MSc	Year/Semester:	Ш
Subject:	Paleo-climatology (Isotope studies)	Course No.:	Hymet 603
Full Marks:	50	Total Period:	30 lecture hours

Class/ Period	Chapter/ Unit	Learning Outcomes of the Chapter/Unit	Major Components	Description/Particulars	Remarks
9 th (60 mins)	Meteoric water lines	Definition of meteoric water line, local and	Contents	Definition of meteoric water line, local and global meteoric water lines, Craig's meteoric water line	

Learning Outcomes of the	Major Components	Description/Particulars	Remarks
Chapter/Unit			
global meteoric water lines, Craig's meteoric water line, definition of deuterium excess	Objectives Teaching Methods	To understand Global Meteoric Water Line (GMWL) and Local Meteoric Water Lines (LMWL) Didactic questioning, Short lecturing, Peer teaching, Discussion, Audiovisual	
and its calculation, difference	Materials	Whiteboard and marker, Multimedia projector, Laptop with ppt	
between precipitation and river water isotopes, altitude	Evaluation	 What is GMWL? What is LMWL? What do the slopes and intercepts of MWL indicate? 	
variation of stable isotopes.	Learning Achievement	Understand GMWL and LMWL	
	Prescribed/ Basic Book	Environmental Isotopes in the Hydrological Cycle, IAEA Clark, I., Fritz, P., Environmental isotopes in hydrogeology. Lewis Publishers, Boca	
		-	Book Hydrological Cycle, IAEA Clark, I., Fritz, P., Environmental isotopes

CENTRAL DEPARTMENT OF HYDROLOGY AND METEOROLOGY

TEACHING PLAN

Institute:	Institute of Science and Technology (IOST)	Department:	Central Department of Hydrology and Meteorology (CDHM)
Level:	MSc	Year/Semester:	Ш
Subject:	Paleo-climatology (Isotope studies)	Course No.:	Hymet 603

Full Marks: 50

Detail Plan of Action for Course Facilitation

Class/ Period	Chapter/ Unit	Learning Outcomes of the Chapter/Unit	Major Components	Description/Particulars	Remarks
10 th (60 mins)	Meteoric water lines	Definition of meteoric water line, local and global meteoric	Contents Objectives	definition of deuterium excess and its calculation To understand deuterium excess (d-	
		water lines, Craig's meteoric water line,	Teaching Methods	excess) Didactic questioning, Short lecturing, Peer teaching, Discussion, Audiovisual	
		definition of deuterium excess and its	Materials	Whiteboard and marker, Multimedia projector, Laptop with ppt	-
		calculation, difference between precipitation and river water isotopes, altitude	Evaluation	 What is d-excess? How is d-excess calculated? What are the factors affecting d-excess? What does d-excess value indicate regarding atmospheric sinculation? 	
		variation of stable isotopes.	Learning Achievement	 regarding atmospheric circulation? Understand d-excess 	
			Prescribed/ Basic Book	Environmental Isotopes in the Hydrological Cycle, IAEA Clark, I., Fritz, P., Environmental isotopes in hydrogeology. Lewis Publishers, Boca Raton, Fla (1997).	

TRIBHUVAN UNIVERSITY

CENTRAL DEPARTMENT OF HYDROLOGY AND METEOROLOGY

TEACHING PLAN

Institute:	Institute of Science and Technology (IOST)	Department:	Central Department of Hydrology and Meteorology (CDHM)
Level:	MSc	Year/Semester:	Ш
Subject:	Paleo-climatology (Isotope studies)	Course No.:	Hymet 603
Full Marks:	50	Total Period:	30 lecture hours

Class/ Period	Chapter/ Unit	Learning Outcomes of the Chapter/Unit	Major Components	Description/Particulars	Remarks
		vater meteoric water	Contents Objectives Teaching Methods	Difference between precipitation and river water isotopes, altitude variation of stable isotopesTo understand the difference between precipitation and river water isotopesTo understand altitude variation of stable isotopesDidactic questioning, Short lecturing, Peer teaching, Discussion, Audiovisual	
			Materials Evaluation Learning Achievement Prescribed/ Basic Book	 Whiteboard and marker, Multimedia projector, Laptop with ppt What are the difference between precipitation and river water isotopes? What is altitude effect? Understand the difference between precipitation and river water isotopes Understand the altitude effect Environmental Isotopes in the Hydrological Cycle, IAEA Clark, I., Fritz, P., Environmental isotopes in hydrogeology. Lewis Publishers, Boca Raton, Fla (1997). 	

CENTRAL DEPARTMENT OF HYDROLOGY AND METEOROLOGY

TEACHING PLAN

Institute:	Institute of Science and Technology (IOST)	Department:	Central Department of Hydrology and Meteorology (CDHM)
Level:	MSc	Year/Semester:	Ш
Subject:	Paleo-climatology (Isotope studies)	Course No.:	Hymet 603
Full Marks:	50	Total Period:	30 lecture hours

Class/	Chapter/	Learning	Major	Description/Particulars	Remarks
Period	Unit	Outcomes of the Chapter/Unit	Components		
12 th and 13 th (120 mins)	Amount and temperature effects	Amount effect and its application, correlation with precipitation and temperature, relationships of stable isotopes with precipitation and temperature, the long term trends of	Contents Objectives	 Amount effect and its application, correlation with precipitation and temperature, relationships of stable isotopes with precipitation and temperature, the long term trends of temperature and precipitation. To understand the amount effect and the temperature effect and their application To understand the trend of temperature effect and amount effect 	
		temperature and precipitation.	Teaching Methods	Didactic questioning, Short lecturing, Peer teaching, Discussion, Audiovisual	

Class/ Period	Chapter/ Unit	Learning Outcomes of the Chapter/Unit	Major Components	Description/Particulars	Remarks
			Materials	Whiteboard and marker, Multimedia projector, Laptop with ppt	
			Evaluation	 What is amount effect? What is temperature effect? What is the trend of temperature effect and amount effect? 	
			Learning Achievement	 Understand the temperature effect and the amount effect Understand the trend of temperature effect and amount effect 	
			Prescribed/ Basic Book	Environmental Isotopes in the Hydrological Cycle, IAEA	
				Clark, I., Fritz, P., Environmental isotopes in hydrogeology. Lewis Publishers, Boca Raton, Fla (1997).	

..... Prepared By Approved By (Subject Teacher)

CENTRAL DEPARTMENT OF HYDROLOGY AND METEOROLOGY

TEACHING PLAN

Institute:	Institute of Science and Technology (IOST)	Department:	Central Department of Hydrology and Meteorology (CDHM)
Level:	MSc	Year/Semester:	Ш
Subject:	Paleo-climatology (Isotope studies)	Course No.:	Hymet 603
Full Marks:	50	Total Period:	30 lecture hours

Class/	Chapter/ Unit	Learning Outcomes of	Major Components	Description/Particulars	Remarks
Period		the Chapter/Unit			
14 th and 15 th (120 mins)	Importance of stable isotopes studies	Application of stable isotopes on local and regional precipitation, tracking of monsoon precipitation, air mass system and circulation process, seasonal, temporal and spatial variation of isotopes, Paleo	Contents Objectives	Application of stable isotopes on local and regional precipitation, tracking of monsoon precipitation, air mass system and circulation process, seasonal, temporal and spatial variation of isotopes, Paleo climate and stable isotopes To understand the application of stable isotopes on local and regional precipitation To understand tracking of monsoon precipitation, air mass system and circulation process using water isotopes To understand temporal and spatial variation of isotopes To understand reconstruction of Paleoclimate using stable isotopes	

Class/ Period	Chapter/ Unit	Learning Outcomes of the Chapter/Unit	Major Components	Description/Particulars	Remarks
		climate and stable	Teaching Methods	Didactic questioning, Short lecturing, Peer teaching, Discussion, Audiovisual	
	isotopes.	isotopes.	Materials	Whiteboard and marker, Multimedia projector, Laptop with ppt	
			Evaluation	 What are the application of stable isotopes? How is paleoclimate reconstructed using application of stable isotopes? How is monsoon evolution and onset identified using stable isotopes in precipitation? 	
			Learning Achievement	Understand the application of stable water isotopes	
			Prescribed/ Basic Book	Environmental Isotopes in the Hydrological Cycle, IAEA	
				Clark, I., Fritz, P., Environmental isotopes in hydrogeology. Lewis Publishers, Boca Raton, Fla (1997).	

Prepared By: Dr. Sunil Acharya (Subject Teacher)

CENTRAL DEPARTMENT OF HYDROLOGY AND METEOROLOGY

TEACHING PLAN

Institute:	Institute of Science and	Department:	Central Department of
	Technology (IOST)		Hydrology and Meteorology (CDHM)
Level:	MSc	Year/Semester:	II
Subject:	Synoptic Meteorology	Course No.:	Hymet 551
Full Marks:	50	Total Period:	30 lecture hours

Class/ Period	Chapter/ Unit	Learning Outcomes of the Chapter/Unit	Major Components	Description/Particulars	Remarks
1 st (120 min)	Air mass	Student will be able to understand air mass classifications, source regions, modification and associated weather	Contents Objectives	 Air mass classifications, source regions, modification and associated weather, To familiarize the students with air mass and different source regions of air mass To understand air mass modification mechanism and associated weather 	
			Teaching Methods	Didactic questioning, Short lecturing, Peer teaching, Discussion, Audiovisual,	
		Materials	Whiteboard and marker, Multimedia projector, Laptop with ppt		
			Evaluation	 What is air mass? What are different sources of air mass regions? What are the air mass modification mechanisms? 	

Class/ Period	Chapter/ Unit	Learning Outcomes of the Chapter/Unit	Major Components	Description/Particulars	Remarks
			Learning Achievement	 Understand concept of air mass Understand different types of air mass source regions Understand the classification process of air mass associated weather 	-
			Prescribed/ Basic Book	Pettersen,s. Weather analysis and forecasting. Vol 1and 2,Mc-2, Mc-Graw Hill Book Company Inc,New York 1956.	

CENTRAL DEPARTMENT OF HYDROLOGY AND METEOROLOGY

TEACHING PLAN

Institute:	Institute of Science and	Department:	Central Department of
	Technology (IOST)		Hydrology and Meteorology (CDHM)
Level:	MSc	Year/Semester:	II
Subject:	Synoptic Meteorology	Course No.:	Hymet 551
Full Marks:	50	Total Period:	30 lecture hours

Class/ Period	Chapter/ Unit	Learning Outcomes of the Chapter/Unit	Major Components	Description/Particulars	Remarks
2 nd (120	Air mass	Student will be able to understand extra- tropical	Contents	Extra- tropical cyclones, their origin and associated weather	
min)		cyclones, their origin and associated weather.	Objectives	 To familiarize the students with origin of cyclone and extratropical cyclone To familiarize the students with Weather associated with cyclone and extra tropical cyclone 	
			Teaching Methods	Didactic questioning, Short lecturing, Peer teaching, Discussion, Audiovisual,	
			Materials	Whiteboard and marker, Multimedia projector, Laptop with ppt	
			Evaluation	 What are differences in tropical and extra tropical weather? What are disasters due to extra tropical weather? 	
			Learning Achievement	Understand concept of extra- tropical cyclones	

Class/ Period	Chapter/ Unit	Learning Outcomes of the Chapter/Unit	Major Components	Description/Particulars	Remarks
				• Understand type of weather associated with extra- tropical cyclones on the globe	
			Prescribed/ Basic Book	Pettersen,s. Weather analysis and forecasting. Vol 1and 2,Mc-2, Mc-Graw Hill Book Company Inc,New York 1956.	-

CENTRAL DEPARTMENT OF HYDROLOGY AND METEOROLOGY

TEACHING PLAN

Institute:	Institute of Science and Technology (IOST)	Department:	Central Department of Hydrology and Meteorology (CDHM)
Level:	MSc	Year/Semester:	II
Subject:	Synoptic Meteorology	Course No.:	Hymet 551
Full Marks:	50	Total Period:	30 lecture hours

Class/ Period	Chapter/ Unit	Learning Outcomes of the Chapter/Unit	Major Components	Description/Particulars	Remarks
3 rd (120	Convective cloud and weather	Student will be able to understand	Contents	Vertical acceleration, stability criteria, classification of sounding,	
min)	weather	Vertical acceleration, stability criteria, classification of sounding	Objectives	 To familiarize the students with vertical acceleration To familiarize the students with Stability criteria on the atmosphere and environment To understand the classification of sounding, 	

Class/ Period	Chapter/ Unit	Learning Outcomes of the Chapter/Unit	Major Components	Description/Particulars	Remarks
			Teaching Methods	Didactic questioning, Short lecturing, Peer teaching, Discussion, Audiovisual,	
			Materials	Whiteboard and marker, Multimedia projector, Laptop with ppt	
			Evaluation	 What is vertical acceleration What is condition for stability? How different instability recognized? How soundings are classified? 	
			Learning Achievement	 Understand concept of vertical acceleration Understand different type of instability condition in the atmosphere Understand the classification of soundings 	
			Prescribed/ Basic Book	Pettersen,s. Weather analysis and forecasting. Vol 1and 2,Mc-2, Mc-Graw Hill Book Company Inc,New York 1956.	

CENTRAL DEPARTMENT OF HYDROLOGY AND METEOROLOGY

TEACHING PLAN

Institute:	Institute of Science and	Department:	Central Department of
	Technology (IOST)		Hydrology and Meteorology (CDMH)
Level:	MSc	Year/Semester:	П
Subject:	Synoptic Meteorology	Course No.:	Hymet 551
Full Marks:	50	Total Period:	30 lecture hours

Class/ Period	Chapter/ Unit	Learning Outcomes of the Chapter/Unit	Major Components	Description/Particulars	Remarks
4 th (120 min)	Convective cloud and weather	Student will be able to understand Intrainment,	Contents	Intrainment, Thunderstorm, Thunderstorm guests	
		Thunderstorm, Thunderstorm guests	Objectives Teaching Methods	 To learn the intrainment process on the atmosphere To learn the thunderstorm process, life cycle To know the thunderstorm guest phenomena Didactic questioning, Short lecturing, Peer teaching, Discussion, Audiovisual 	
			Materials	Whiteboard and marker, Multimedia projector, Laptop with ppt	-
			Evaluation	 What is intrainment process on the atmosphere? What are life cycle of thunderstorm and thunderstorm guests? What are the differences between thunderstorm and thunderstorm guest? 	

Class/ Period	Chapter/ Unit	Learning Outcomes of the Chapter/Unit	Major Components	Description/Particulars	Remarks
			Learning Achievement	 Understand intrainment process Understand the differences between thunderstorm and thunderstorm gusts . 	
			Prescribed/ Basic Book	Pettersen,s. Weather analysis and forecasting. Vol 1and 2,Mc-2, Mc-Graw Hill Book Company Inc,New York 1956	

CENTRAL DEPARTMENT OF HYDROLOGY AND METEOROLOGY

TEACHING PLAN

Institute:	Institute of Science and Technology (IOST)	Department:	Central Department of Hydrology and Meteorology (CDMH)
Level:	MSc	Year/Semester:	II
Subject:	Synoptic Meteorology	Course No.:	Hymet 551
Full Marks:	50	Total Period:	30 lecture hours

Class/ Period	Chapter/ Unit	Learning Outcomes of the Chapter/Unit	Major Components	Description/Particulars	Remarks
5 th (120 min)	Convective cloud and weather	Student will be able to understand Hailstorms,	Contents	Hailstorms, local weather warnings	
		141151011115,	Objectives	To learn Hailstorms How it forms Characteristics of it 	

Class/ Period	Chapter/ Unit	Learning Outcomes of the Chapter/Unit	Major Components	Description/Particulars	Remarks
		local weather warnings		To learn local weather warnings Forecast with different statistical methods 	
			Teaching Methods	Whiteboard and marker, Multimedia projector, Laptop with ppt	
			Materials	Whiteboard and marker, Multimedia projector, Laptop with ppt	
			Evaluation	 What are Hailstorms? How local weather are forecasting? 	
			Learning Achievement	 Understand hailstorms, Understand local weather warnings Understand the weather forecasting methodology. 	
			Prescribed/ Basic Book	Pettersen,s. Weather analysis and forecasting. Vol 1and 2,Mc-2, Mc-Graw Hill Book Company Inc,New York 1956	

CENTRAL DEPARTMENT OF HYDROLOGY AND METEOROLOGY

TEACHING PLAN

Institute:	Institute of Science and Technology (IOST)	Department:	Central Department of Hydrology and Meteorology (CDMH)
Level:	MSc	Year/Semester:	Π
Subject:	Synoptic Meteorology	Course No.:	Hymet 551
Full Marks:	50	Total Period:	30 lecture hours

Class/ Period	Chapter/ Unit	Learning Outcomes of the Chapter/Unit	Major Components	Description/Particulars	Remarks
6 th (120	Global Wind System	Student will be able to understand General	Contents	General circulation, single and three cell model	
min)	System	circulation, single and three cell model	Objectives	 To learn circulation pattern of air mass General circulation Controlling factors To learn Three cell model Familiar with zonal circulation Vertical circulation, How air mass travel in different altitude and latitude. 	
			Teaching Methods	Didactic questioning, Short lecturing, Peer teaching, Discussion, Audiovisual	
			Materials	Whiteboard and marker, Multimedia projector, Laptop with ppt	
			Evaluation	 What are the factors for circulation of air mass? How air mass circulation in different cells? How Energy is transferred? 	
			Learning	• Understand Circulation of air mass	
			Achievement	• Understand basic principles of three cell model phenomena.	
			Prescribed/ Basic	Pettersen, s. Weather analysis and	
			Book	forecasting. Vol 1and 2,Mc-2, Mc-Graw Hill Book Company Inc,New York 1956.	

CENTRAL DEPARTMENT OF HYDROLOGY AND METEOROLOGY

TEACHING PLAN

Institute:	Institute of Science and	Department:	Central Department of
	Technology (IOST)		Hydrology and Meteorology (CDMH)
Level:	MSc	Year/Semester:	Π
Subject:	Synoptic Meteorology	Course No.:	Hymet 551
Full Marks:	50	Total Period:	30 lecture hours

Class/ Period	Chapter/ Unit	Learning Outcomes of the Chapter/Unit	Major Components	Description/Particulars	Remarks
7 th	Weather satellite	Student will be able to understand	Contents	Elnino-southern oscillation	
(120 min)	and orbits	Elnino-southern oscillation	Objectives Translater Mathematic	 To learn Southern oscillation Pressure differences. Sea level temperature Periodity of occurrence To learn anomaly of SSt and rainfall variability in different parts of Globe Effects on National economy due to Elnino 	
			Teaching Methods	Didactic questioning, Short lecturing, Peer teaching, Discussion, Audiovisual	
			Materials	Whiteboard and marker, Multimedia projector, Laptop with ppt	
			Evaluation	 Understand of SOI How Elnino and non Elnino years are identified? What are the correlation between SST and Rainfall 	

Class/ Period	Chapter/ Unit	Learning Outcomes of the Chapter/Unit	Major Components	Description/Particulars	Remarks
			Learning Achievement	 Understand southern oscillation phenomena Understand basic SST variability in Elnino and non Elnino years 	
			Prescribed/ Basic Book	Pettersen,s. Weather analysis and forecasting. Vol 1and 2,Mc-2, Mc-Graw Hill Book Company Inc,New York 1956.	

CENTRAL DEPARTMENT OF HYDROLOGY AND METEOROLOGY

TEACHING PLAN

Institute:	Institute of Science and Technology (IOST)	Department:	Central Department of Hydrology and Meteorology (CDMH)
Level:	MSc	Year/Semester:	II
Subject:	Synoptic Meteorology	Course No.:	Hymet 551
Full Marks:	50	Total Period:	30 lecture hours

Class/ Period	Chapter/ Unit	Learning Outcomes of the Chapter/Unit	Major Components	Description/Particulars	Remarks
8 th (120 min)	Middle and high latitude weather system	Student will be able to understand the Jet streams, their classification and characteristics	Contents Objectives	 Jet streams, their classification and characteristics To learn the jet streams To identify the different type of jet streams To understand the classification of jet streams 	-
				• To understand the winter and summer characteristics of jet streams	

Class/ Period	Chapter/ Unit	Learning Outcomes of the Chapter/Unit	Major Components	Description/Particulars	Remarks
			Teaching Methods	Didactic questioning, Short lecturing, Peer teaching, Discussion, Audiovisual	
			Materials	Whiteboard and marker, Multimedia projector, Laptop with ppt	
			Evaluation	 What are the jet streams? Where jet streams are found? How jet streams are classified? How differentiate characteristics of jet streams in winter and summer seasons? 	-
			Learning Achievement	• Understand jet streams concept, types and characteristics of jet streams	
			Prescribed/ Basic Book	Pettersen,s. Weather analysis and forecasting. Vol 1and 2,Mc-2, Mc-Graw Hill Book Company Inc,New York 1956.	

CENTRAL DEPARTMENT OF HYDROLOGY AND METEOROLOGY

TEACHING PLAN

Institute:	Institute of Science and Technology (IOST)	Department:	Central Department of Hydrology and Meteorology (CDMH)
Level:	MSc	Year/Semester:	II
Subject:	Synoptic Meteorology	Course No.:	Hymet 551
Full Marks:	50	Total Period:	30 lecture hours

Class/ Period	Chapter/ Unit	Learning Outcomes of the Chapter/Unit	Major Components	Description/Particulars	Remarks
9 th (120 min)	Middle and high	The student will be able to understand Asian	Contents	Asian monsoon, associated weather	
	latitude weather system	monsoon, associated weather	Objectives	 To learn Asian monsoon Formation mechanism of monsoon To know the importance of Asian monsoon. 	-
			Teaching Methods	Didactic questioning, Short lecturing, Peer teaching, Discussion, Audiovisual	
			Materials	Whiteboard and marker, Multimedia projector, Laptop with ppt	
			Evaluation	 What is monsoon and how it is play important role in Asia? What are the onset dates of monsoon in Asia? What are the causes of monsoon variability? 	
			Learning Achievement	 Understand different season's rainfall Variability. Understand weather associated with atmospheric phenomena Understand cyclone,anticyclones 	
		Prescribed/ B Book	Prescribed/ Basic Book	Pettersen,s. Weather analysis and forecasting. Vol 1and 2,Mc-2, Mc-Graw Hill Book Company Inc,New York 1956.	

CENTRAL DEPARTMENT OF HYDROLOGY AND METEOROLOGY

TEACHING PLAN

Institute:	Institute of Science and	Department:	Central Department of
	Technology (IOST)		Hydrology and Meteorology (CDMH)

Level:	MSc	Year/Semester:	II
Subject:	Synoptic Meteorology	Course No.:	Hymet 551
Full Marks:	50	Total Period:	30 lecture hours

Class/ Period	Chapter/ Unit	Learning Outcomes of the Chapter/Unit	Major Components	Description/Particulars	Remarks
10 th (120 min)	Synoptic component of the monsoon	The student will be able to understand role of ITCZ on monsoon	Contents	Role of ITCZ on monsoon circulation, easterly waves, near equatorial monsoon trough,	
	nonsoon	circulation ,easterly waves, near equatorial monsoon trough	Objectives	 To understand importance of ITCZ To learn effects on ITCZ on SW monsoon circulation system To understand the monsoon trough 	
			Teaching Methods	Didactic questioning, Short lecturing, Peer teaching, Discussion, Audiovisual,	
			Materials	Whiteboard and marker, Multimedia projector, Laptop with ppt,	
			Evaluation	 What are the importances of ITCZ on SW monsoon system? What is monsoon trough how it shifts? 	-
			Learning Achievement	 Understand role of ITCZ on SW monsoon circulation. Monsoon trough ,easterly waves 	
			Prescribed/ Basic Book	Pettersen,s. Weather analysis and forecasting. Vol 1and 2,Mc-2, Mc-Graw Hill Book Company Inc,New York 1956.	

CENTRAL DEPARTMENT OF HYDROLOGY AND METEOROLOGY

TEACHING PLAN

Institute:	Institute of Science and Technology (IOST)	Department:	Central Department of Hydrology and Meteorology (CDMH)
Level:	MSc	Year/Semester:	Ш
Subject:	Synoptic Meteorology	Course No.:	Hymet 551
Full Marks:	50	Total Period:	30 lecture hours

Class/ Period	Chapter/ Unit	Learning Outcomes of the Chapter/Unit	Major Components	Description/Particulars	Remarks
11 th (120 min)	Synoptic component of the monsoon	The student will be able to understand squall lines in the	Contents	Squall lines in the monsoon area, planetary scale monsoons, corresponding elements of winter and summer monsoon.	
		monsoon area, planetary scale monsoons, corresponding elements of winter and summer monsoon	Objectives	 To learn squall lines in the monsoon area To learn planetary scale monsoons circulation system To understand the Variability of rainfall due to effect of planetary circulation system To understand the Variability of winter and summer monsoon in Asia. 	
			Teaching Methods	Didactic questioning, Short lecturing, Peer teaching, Discussion, Audiovisual	
			Materials	Whiteboard and marker, Multimedia projector, Laptop with ppt	
			Evaluation	• What is the effect on monsoon variability due to planetary scale monsoon circulation?	

Class/ Period	Chapter/ Unit	Learning Outcomes of the Chapter/Unit	Major Components	Description/Particulars	Remarks
				• How winter and monsoon rainfall variability occurred on the globe?	
			Learning Achievement	 Understand squall lines in the monsoon area Understand planetary scale monsoons, corresponding elements of winter and summer monsoon. 	
			Prescribed/	Pettersen, s. Weather analysis and forecasting.	
			Basic Book	Vol 1and 2,Mc-2, Mc-Graw Hill Book Company Inc,New York 1956.	

CENTRAL DEPARTMENT OF HYDROLOGY AND METEOROLOGY

TEACHING PLAN

Institute:	Institute of Science and Technology (IOST)	Department:	Central Department of Hydrology and Meteorology (CDMH)
Level:	MSc	Year/Semester:	Π
Subject:	Synoptic Meteorology	Course No.:	Hymet 551
Full Marks:	50	Total Period:	30 lecture hours

Class/ Period	Chapter/ Unit	Learning Outcomes of the Chapter/Unit	Major Components	Description/Particulars	Remarks
12 th (120	Synoptic component of the	The student will be able to The	Contents	The easterly jet stream, different component of SW Indian monsoon.	
min)	of the easterly jet monsoon stream different component of SW Indian monsoon	stream different component of SW Indian	Objectives	 To understand the easterly jet stream and its characteristics To understand different component of SW Indian Monsoon To understand On set, with drawl dates of South Asian country. Monsoon Variability 	
			Teaching Methods	Didactic questioning, Short lecturing, Peer teaching, Discussion, Audiovisual,	
			Materials	Whiteboard and marker, Multimedia projector, Laptop with ppt,	-
	E	Evaluation	 What are the easterly jet streams and how it effects on SW monsoon? What is the onset and withdrawal dates of SW monsoon? 	-	
			Learning Achievement	 Understand SW Asian monsoon and its importance in south Asia. Understand effects of jet streams on SW monsoon 	
			Prescribed/ Basic Book	Pettersen,s. Weather analysis and forecasting. Vol 1and 2,Mc-2, Mc-Graw Hill Book Company Inc,New York 1956.	

CENTRAL DEPARTMENT OF HYDROLOGY AND METEOROLOGY

TEACHING PLAN

Institute:	Institute of Science and Technology (IOST)	Department:	Central Department of Hydrology and Meteorology (CDMH)
Level:	MSc	Year/Semester:	Ш
Subject:	Synoptic Meteorology	Course No.:	Hymet 551
Full Marks:	50	Total Period:	30 lecture hours

Class/ Period	Chapter/ Unit	Learning Outcomes of the Chapter/Unit	Major Components	Description/Particulars	Remarks
13 th (120	Precipation and mesoscale	Student will be able to understand	Contents	General features of monsoon rainfall, heat low, monsoon depressions,	
min)	feature of the monsoon	general features of monsoon rainfall, heat low, monsoon depressions	Objectives Teaching Methods	 To understand features of monsoon(Variability) To learn heat low and associated weather To understand monsoon depression mechanism Didactic questioning, Short lecturing, Peer teaching, Discussion, Audiovisual, 	
		Mat	Materials	Whiteboard and marker, Multimedia projector, Laptop with ppt	
			Evaluation	 What are the feathers of summer monsoon? What are the favorable conditions for heat low? How SW monsoon are depressed? 	

Class/ Period	Chapter/ Unit	Learning Outcomes of the Chapter/Unit	Major Components	Description/Particulars	Remarks
			Learning Achievement	 Understand monsoon feathers variability Understand heat low and monsoon depression mechanism 	
			Prescribed/ Basic Book	Pettersen,s. Weather analysis and forecasting. Vol 1and 2,Mc-2, Mc-Graw Hill Book Company Inc,New York 1956.	

CENTRAL DEPARTMENT OF HYDROLOGY AND METEOROLOGY

TEACHING PLAN

Institute:	Institute of Science and Technology (IOST)	Department:	Central Department of Hydrology and Meteorology (CDMH)
Level:	MSc	Year/Semester:	II
Subject:	Synoptic Meteorology	Course No.:	Hymet 551
Full Marks:	50	Total Period:	30 lecture hours

Class/ Period	Chapter/ Unit	Learning Outcomes of the Chapter/Unit	Major Components	Description/Particulars	Remarks
14 th (120 min)	Precipation and mesoscale	Student will be able to understand	Contents	Monsoon inversion, on set of monsoon, withdrawl of monsoon, active and break monsoon,	
the mo monsoon of wi an	monsoon inversion, on set of monsoon, withdrawl of monsoon, active	Objectives	 To understand monsoon inversion To understand on set of monsoon, withdrawal of monsoon, active and break monsoon, 		
	and break monsoon	Teaching Methods	Didactic questioning, Short lecturing, Peer teaching, Discussion, Audiovisual,		
			Materials	Whiteboard and marker, Multimedia projector, Laptop with ppt,	
		Evaluation	 What are the feathers of active and withdrawal of monsoon? What are the onset dates in south Asia? 		
		F	Learning Achievement	 Understand the monsoon inversion, on set of monsoon, withdrawal of monsoon, Understand active and break monsoon on south asia 	
			Prescribed/ Basic Book	Pettersen,s. Weather analysis and forecasting. Vol 1and 2,Mc-2, Mc-Graw Hill Book Company Inc,New York 1956.	-

CENTRAL DEPARTMENT OF HYDROLOGY AND METEOROLOGY

TEACHING PLAN

Institute:	Institute of Science and Technology (IOST)	Department:	Central Department of Hydrology and Meteorology (CDMH)
Level:	MSc	Year/Semester:	Π
Subject:	Synoptic Meteorology	Course No.:	Hymet 551
Full Marks:	50	Total Period:	30 lecture hours

Class/ Period	Chapter/ Unit	Learning Outcomes of the Chapter/Unit	Major Components	Description/Particulars	Remarks
15 th (120 min)	Precipation and mesoscale feature of the monsoon	Student will be able to understand floods and drought trends of monsoon	Contents Objectives Teaching Methods Materials Evaluation Learning Achievement Prescribed/ Basic Book	 Floods and drought trends of monsoon To understand how flood and drought connection with SOI and SST Weak or strong connection between SOI and drought and flood Didactic questioning, Short lecturing, Peer teaching, Discussion, Audiovisual, Whiteboard and marker, Multimedia projector, Laptop with ppt What are the feathers of flood and drought in summer monsoon? How drought and floods and drought trends of monsoon Understand floods and drought trends of monsoon Understand flood and drought causes disasters Pettersen,s. Weather analysis and forecasting. Vol 1and 2,Mc-2, Mc-Graw Hill Book Company Inc,New York 1956. 	

CENTRAL DEPARTMENT OF HYDROLOGY AND METEOROLOGY

TEACHING PLAN

Institute:	Institute of Science and Technology (IOST)	Department:	Central Department of Hydrology and Meteorology (CDMH)
Level:	MSc	Year/Semester:	II
Subject:	Synoptic Meteorology	Course No.:	Hymet 551
Full Marks:	50	Total Period:	30 lecture hours

Class/ Period	Chapter/ Unit	Learning Outcomes of the Chapter/Unit	Major Components	Description/Particulars	Remarks
16 th (120 min)	Climatological march of the seasons	Student will be able to understand	Contents Objectives	 Role of the Himalayan-Tibetan Massif in the monsoons during different seasons. To understand features of 	-
		role of the Himalayan- Tibetan Massif in the monsoons during different		 To learn heat low and associated weather To understand monsoon depression mechanism 	
		seasons	Teaching Methods	Didactic questioning, Short lecturing, Peer teaching, Discussion, Audiovisual	
			Materials	Whiteboard and marker, Multimedia projector, Laptop with ppt	
			Evaluation	 What are the feathers of summer monsoon? What are the favorable conditions for heat low? How SW monsoon are depressed? 	

Class/ Period	Chapter/ Unit	Learning Outcomes of the Chapter/Unit	Major Components	Description/Particulars	Remarks
			Learning Achievement	 Understand role of the Himalayan- Tibetan Massif in the monsoons during different seasons. Understand Himalayan-Tibetan Massif and its importance in Asia 	
			Prescribed/ Basic Book	Pettersen,s. Weather analysis and forecasting. Vol 1and 2,Mc-2, Mc-Graw Hill Book Company Inc,New York 1956.	

CENTRAL DEPARTMENT OF HYDROLOGY AND METEOROLOGY

TEACHING PLAN

Institute:	Institute of Science and Technology (IOST)	Department:	Central Department of Hydrology and Meteorology (CDMH)
Level:	MSc	Year/Semester:	II
Subject:	Synoptic Meteorology	Course No.:	Hymet 551
Full Marks:	50	Total Period:	30 lecture hours

Class/	Chapter/	Learning	Major	Description/Particulars	Remarks
Period	Unit	Outcomes of the Chapter/Unit	Components		
17 th	General Circulation Features	Student will be able to understand	Contents	Winter seasons (winter monsoon), Summer seasons (pre-monsoon, monsoon, post monsoon).	

Class/ Period	Chapter/ Unit	Learning Outcomes of the Chapter/Unit	Major Components	Description/Particulars	Remarks
(120 min)	over Nepal during the seasons	Winter seasons (winter monsoon), Summer seasons(pre- monsoon, monsoon, post monsoon)	Objectives Teaching Methods	 To understand the features of winter seasons rainfall Variability over Nepal To understand monsoon fluctuation in pre, post and monsoon seasons in Nepal Didactic questioning, Short lecturing, Peer teaching, Discussion, Audiovisual, 	-
			Materials Evaluation	 Whiteboard and marker, Multimedia projector, Laptop with ppt What are the feathers of summer monsoon? Discuss the winter seasons rainfall 	-
			Learning Achievement Prescribed/	 variability in Nepal? Understand Winter seasons rainfall variability Understand Summer seasons (pre- monsoon, monsoon, post monsoon) rainfall characteristics Pattersen s. Weather analysis and forecasting 	
			Basic Book	Pettersen,s. Weather analysis and forecasting. Vol 1and 2,Mc-2, Mc-Graw Hill Book Company Inc,New York 1956.	

Faculty:	Science	Department:	Central Dept. of
			Hydrology and
			Meteorology
Level:	Master (M.Sc.)	Year/Semester:	III semester
Subject:	Atmospheric Chemistry	Course No.:	Hymet 601
Full	50	Total Period:	30
Marks:			

pter/ nit	Learning Outcomes of the Chapter/Unit	Major Components	Description/Particulars
neto- ronic	Identify	Contents	Ionosphere
ture	a) D-regionb) E-regionc) F-region	Objectives	The students will be able to - (a) conceptualize the different layers of the upper atmosphere (b) differentiate the layers within the ionosphere (c) visualize the layer
		Teaching Methods	Didactic questioning, Short lecturing, Discussion, and Skills practice
		Materials	White board and marker, Multimedia projector, Laptop with ppt,
		Evaluation	 Name the layers of the upper atmosphere? How the behavior and numbers of free electrons and other charged particles differentiate the upper atmosphere? What is ionosphere?
		Learning Achievement	 Understand the electromagnetic structure of the ionosphere Distinguish between various region of the Ionosphere Draw the Schematic diagram of ionosphere.
		Prescribed/ Basic Book	Atmospheric structure https://www.albany.edu/faculty/rgk/atm101/structur.htm

Faculty:	Science	Department:	Central Dept. of
			Hydrology and
			Meteorology
Level:	Master (M.Sc.)	Year/Semester:	III semester
Subject:	Atmospheric Chemistry	Course No.:	Hymet 601
Full	50	Total Period:	30
Marks:			

	Detail Plan of Action for Course Facilitation					
pter/ nit	Learning Outcomes of the Chapter/Unit	Major Components	Description/Particulars			
neto- ronic	Identify the structure and extension of the	Contents	Plasmasphere			
ture	Plasmasphere	Objectives	 The students will be able to - a) conceptualize the constituents of the Plasmasphere b) visualize the layer 			
		Teaching Methods	Didactic questioning, Short lecturing, Discussion, and Skills practice			
		Materials	White board and marker, Multimedia projector, Laptop with ppt,			
		Evaluation	 Write about Plasmasphere. How the behavior and numbers of free electrons and other charged particles in Plasmasphere is different from Ionosphere 			
		Learning Achievement	 Understand the electromagnetic structure of the Plasmasphere Draw the Schematic diagram of ionosphere. 			
		Prescribed/ Basic Book	Atmospheric structure https://www.albany.edu/faculty/rgk/atm101/structur.htm			

Prepared By: Mr. Damodar Bagale

Faculty:	Science	Department:	Central Dept. of
			Hydrology and
			Meteorology
Level:	Master (M.Sc.)	Year/Semester:	III semester
Subject:	Atmospheric Chemistry	Course No.:	Hymet 601
Full	50	Total Period:	30
Marks:			

Detail Plan of Action for Course Facilitation

	Detail Flair of Action for Course Facilitation			
pter/	Learning	Major Components	Description/Particulars	
nit	Outcomes of the			
	Chapter/Unit			
neto- ronic	Identify the structure	Contents	Magnetosphere	
ture	and extension of the	Objectives	The students will be able to –	
	Magnetosphere		a) conceptualize the constituents of the Magnetosphereb) visualize the layer	
		Teaching Methods	Didactic questioning, Short lecturing, Discussion, and Skills	
			practice	
		Materials	White board and marker, Multimedia projector, Laptop with ppt,	
		Evaluation	• Write about Magnetosphere.	
			• How the behavior and numbers of free electrons and other charged particles in Magnetosphere is different from Ionosphere and Plasmasphere	
		Learning	• Understand the electromagnetic structure of the	
		Achievement	Magnetosphere Draw the Schematic diagram of Magnetosphere	
			Draw the Schematic diagram of Magnetosphere.	
		Prescribed/ Basic	Atmospheric structure	
		Book	https://www.albany.edu/faculty/rgk/atm101/structur.htm	
	1			

TRIBHUVAN UNIVERSITY CENTRAL DEPARTMENT OF HYDROLOGY AND METEOROLOGY

TEACHING PLAN				
Faculty:ScienceDepartment:Central Dept. of				
		Hydrology and		
		Meteorology		
Master (M.Sc.)	Year/Semester:	III semester		
Atmospheric Chemistry	Course No.:	Hymet 601		
50	Total Period:	30		
	Science Master (M.Sc.) Atmospheric Chemistry	ScienceDepartment:Master (M.Sc.)Year/Semester:Atmospheric ChemistryCourse No.:		

		Detail Plan of Act	ion for Course Facilitation
pter/ nit	Learning Outcomes of the Chapter/Unit	Major Components	Description/Particulars
٩	Get information	Contents	Historical background
ry	about the history of ozone layer from 1800's, till to future 2050's.	Objectives	The students will be able to – conceptualize the initiation of the Ozone layer and its studies by scientists at different periods (ozone spectrophotometer, chlorofluorocarbons, Sydney Chapman theory, Ozonesonde, supersonic transport)
		Teaching Methods	Questioning, Short lecturing, Discussion, and Skills practice
		Materials	White board and marker, Multimedia projector, Laptop with ppt,
		Evaluation	 Which scientist invented ozone spectrophotometer for what purpose? What are <u>chlorofluorocarbons?</u> <u>What is supersonic transport?</u>
		Learning	• Understand the history of ozone layer
		Achievement	• List outs the Outline of the history of ozone layer
		Prescribed/ Basic	A Brief History of Ozone
		Book	https://www.albany.edu/faculty/rgk/atm101/o3histor.htm
			https://svs.gsfc.nasa.gov/11644

TRIBHUVAN UNIVERSITY CENTRAL DEPARTMENT OF HYDROLOGY AND METEOROLOGY

TEACHING PLAN				
Faculty:ScienceDepartment:Central Dept. of				
			Hydrology and	
			Meteorology	
Level:	Master (M.Sc.)	Year/Semester:	III semester	
Subject:	Atmospheric Chemistry	Course No.:	Hymet 601	
Full	50	Total Period:	30	
Marks:				

	Detail Plan of Action for Course Facilitation				
pter/ nit	Learning Outcomes of the Chapter/Unit	Major Components	Description/Particulars		
e	Visualize the concentration of the	Contents	Historical background		
OZ	ozone from 1980 to 2070	Objectives	The students will be able to – About NOx catalytic cycle, Total Ozone Mapping Spectrometer, Vienna Convention, Montreal Protocol , Hydrochlorofluorocarbon		
		Teaching Methods	Didactic questioning, Short lecturing, Discussion, and Skills practice		
	1	Materials	White board and marker, Multimedia projector, Laptop with ppt,		
		Evaluation	 What is Montreal Protocol? How its adaptation enhances the atmospheric chemistry? Write about the concentration of ozone layer 		
		Learning Achievement	 Understand the electromagnetic structure of the Magnetosphere Draw the Schematic diagram of Magnetosphere. 		
		Prescribed/ Basic Book	A Brief History of Ozone https://www.albany.edu/faculty/rgk/atm101/o3histor.htm https://svs.gsfc.nasa.gov/11644		

Faculty:	Science	Department:	Central Dept. of Hydrology and Meteorology
Level:	Master (M.Sc.)	Year/Semester:	III semester
Subject:	Atmospheric Chemistry	Course No.:	Hymet 601
Full Marks:	50	Total Period:	30

	Detail Plan of Action for Course Facilitation			
pter/ nit	Learning Outcomes of the Chapter/Unit	Major Components	Description/Particulars	
e	Identify the structure, occurrence	Contents	Formation of ozone layer	
ry	and properties of the ozone layer	Objectives	The students will be able to – c) conceptualize the formation of the ozone d) visualize the layer	
		Teaching Methods	Didactic questioning, Short lecturing, Discussion, and Skills practice	
		Materials	White board and marker, Multimedia projector, Laptop with ppt,	
		Evaluation	Write about the formation of ozone layer?How we can define the latest global distribution of ozone	
		Learning Achievement	Know about the variability of the ozone layer.Understand the distribution of ozone	
		Prescribed/ Basic Book	Atmospheric structure http://ozone.meteo.be/meteo/view/en/1547926- The+ozone+layer.html	

)

Faculty:	Science	Department:	Central Dept. of Hydrology and Meteorology
Level:	Master (M.Sc.)	Year/Semester:	III semester
Subject:	Atmospheric Chemistry	Course No.:	Hymet 601
Full Marks:	50	Total Period:	30

	Detail Plan of Action for Course Facilitation				
pter/ nit			Description/Particulars		
e	Identify the sources	Contents	Sources of ozone layer.		
	of ozone layer	Objectives	The students will be able to –		
ſŸ			a) conceptualize the sources of the ozone layerb) visualize the layer		
		Teaching Methods	Didactic questioning, Short lecturing, Discussion, and Skills practice		
		Materials	White board and marker, Multimedia projector, Laptop with ppt,		
		Evaluation	Write about sources of ozone layer.How the ozone layer is affected by other constituents		
		Learning Achievement	 Understand the sources of the ozone layer Draw the Schematic diagram of ozone in the atmosphere 		
		Prescribed/ Basic Book	Atmospheric structure https://www.epa.gov/ozone-layer- protection/basic-ozone-layer-science		

Faculty:	Science	Department:	Central Dept. of
			Hydrology and
			Meteorology

Level:	Master (M.Sc.)	Year/Semester:	III semester
Subject:	Atmospheric Chemistry	Course No.:	Hymet 601
Full	50	Total Period:	30
Marks:			

	Detail Plan of Action for Course Facilitation				
ıpter/ İnit			Description/Particulars		
ct of wiolet- VB)	Identify the effect of ultraviolet-B (UVB)	Contents	Effect on human health, plants, marine ecosystem, biogeochemical cycles, materials, atmospheric circulation.		
ation	radiation	Objectives Teaching Methods	The students will be able to – a) Conceptualize the effect of UVB on different materials and bio organisms.		
		Teaching Methods	Didactic questioning, Short lecturing, Discussion, and Skills practice		
		Materials	White board and marker, Multimedia projector, Laptop with ppt,		
		Evaluation	• What are the effects of Ultraviolet-B(UVB) Radiation?		
		Learning	• Understand the the effects of Ultraviolet-B(UVB) Radiation.		
		Achievement	• Listing out the factors on which. Ultraviolet-B(UVB) Radiation effects.		
		Prescribed/ Basic Book	Atmospheric structure https://www.fda.gov/radiation-emitting- products/tanning/ultraviolet-uv-radiation#4		

Faculty:	Science	Department:	Central Dept. of
			Hydrology and
			Meteorology
Level:	Master (M.Sc.)	Year/Semester:	III semester
Subject:	Atmospheric Chemistry	Course No.:	Hymet 601

	Full50Marks:		Total Period: 30
		Detail Plan of Acti	ion for Course Facilitation
apter/ Jnit	Learning Outcomes of the Chapter/Unit	Major Components	Description/Particulars
ospheric e	Identify the vertical and latitudinal	Contents	Formation and destruction of ozone
dis	distribution of the ozone	Objectives	 The students will be able to – b) conceptualize the chemistry of the ozone layer c) visualize the layer
		Teaching Methods	Didactic questioning, Short lecturing, Discussion, and Skills practice
		Materials	White board and marker, Multimedia projector, Laptop with ppt,
		Evaluation	Write about the stratospheric ozone with diagram.What is Chapman Mechanism?
		Learning Achievement	Understand the nature of stratospheric ozoneCan write the equation of Chapman Mechanism.
		Prescribed/ Basic Book	Atmospheric Chemistry http://acmg.seas.harvard.edu/people/faculty/djj/book/bookchap10.html

Faculty:	Science	Department:	Central Dept. of Hydrology and Meteorology
Level:	Master (M.Sc.)	Year/Semester:	III semester
Subject:	Atmospheric Chemistry	Course No.:	Hymet 601
Full Marks:	50	Total Period:	30

apter/	Learning	Major	Description/Particulars
J nit	Outcomes of the	Components	
	Chapter/Unit	P	
	Chapter/Unit		
ospheric		Contents	
o spherie	Identify the	Contents	Formation and destruction of ozone
C	chemical reactions	Objectives	The students will be able to –
	of Chapman		
	-		d) conceptualize the constituents of the Magnetosphere
	mechanism and		e) visualize the layer
	figure out the	Teaching Methods	Didactic questioning, Short lecturing, Discussion, and Skills
	steady-state		practice
	solution		
:		Materials	White board and marker, Multimedia projector, Laptop with ppt,
		Evaluation	 Discuss the chapman mechanism for ozone
			formation and destruction.
		Learning	• Understand the Chapman mechanism for formation and
		Achievement	destruction of ozone layer.
		Prescribed/ Basic	Atmospheric Chemistry
		Book	http://acmg.seas.harvard.edu/people/faculty/djj/book/bookchap10.html

Faculty:	Science	Department:	Central Dept. of
			Hydrology and
			Meteorology
Level:	Master (M.Sc.)	Year/Semester:	III semester
Subject:	Atmospheric Chemistry	Course No.:	Hymet 601
Full	50	Total Period:	30
Marks:			

Chapter/ Unit	Learning Outcomes of the Chapter/Unit	Major Components	Description/Particulars	Re
Stratospheric ozone	Identify the catalytic loss cycle of Hydrogen oxide radicals (HOx)	Contents Objectives Teaching Methods Materials Evaluation	Catalytic loss cycles The students will be able to – conceptualize the constituents of hydrogen oxide radicals for formation and destruction Didactic questioning, Short lecturing, Discussion, and Skills practice White board and marker, Multimedia projector, Laptop with ppt, A termination step for the HOx radical chain is HO2 + HO2 → H2O2 (hydrogen peroxide) Hydrogen peroxide can go on to either photolyze or react with OH: H2O2 + hv → 2OH H2O2 + OH → H2O + HO2 Whether H2O2 photolyzes or reacts with OH has a large effect on HOx-catalyzed ozone loss, explain why.	
		Learning Achievement Prescribed/ Basic Book	 Understand the catalytic ozone loss by hydrogen oxide radicals Write the chemical reaction of the catalytic loss by HOx radical <u>Atmospheric Chemistry</u> <u>http://acmg.seas.harvard.edu/people/faculty/djj/book/bookchap10.html</u> 	-

Faculty:	Science	Department:	Central Dept. of
			Hydrology and
			Meteorology
Level:	Master (M.Sc.)	Year/Semester:	III semester
Subject:	Atmospheric Chemistry	Course No.:	Hymet 601
Full	50	Total Period:	30
Marks:			

		Detail Plan of Activ	on for Course Facilitation
apter/ Jnit	Learning Outcomes of the Chapter/Unit	Major Components	Description/Particulars
ospheric e	Identify the catalytic loss cycle of Nitrogen	Contents	Catalytic loss cycles
	oxide radicals (NOx)	Objectives	The students will be able to – conceptualize the constituents of Nitrogen oxide radicals (NOx) for formation and destruction
		Teaching Methods	Didactic questioning, Short lecturing, Discussion, and Skills practice
		Materials	White board and marker, Multimedia projector, Laptop with ppt,
		Evaluation	N ₂ O in the stratosphere can react by two alternate pathways: N ₂ O + hv \rightarrow N ₂ + O(1) and N ₂ O + O(¹ D) \rightarrow 2 NO (2) Show that competition between (1) and (2) lends stability to the ozone layer, i.e., acts as a negative feedback to an ozone perturbation.
		Learning Achievement	 Understand the catalytic ozone loss by Nitrogen oxide radicals Write the chemical reaction of the catalytic loss by NOx radical

apter/ Jnit	Learning Outcomes of the Chapter/Unit	Major Components	Description/Particulars
		Prescribed/ Basic Book	<u>Atmospheric structure</u> <u>https://www.albany.edu/faculty/rgk/atm101/structur.htm</u>

Faculty:	Science	Department:	Central Dept. of
			Hydrology and
			Meteorology
Level:	Master (M.Sc.)	Year/Semester:	III semester
Subject:	Atmospheric Chemistry	Course No.:	Hymet 601
Full	50	Total Period:	30
Marks:			

		Detail Plan of Activ	on for Course Facilitation
apter/ Jnit	Learning Outcomes of the Chapter/Unit	Major Components	Description/Particulars
ospheric e	Identify the catalytic loss cycle of Chlorine	Contents	Catalytic loss cycles
	radicals (ClOx)	Objectives	The students will be able to – conceptualize the constituents of Chlorine radicals (ClOx) for formation and destruction
		Teaching Methods	Didactic questioning, Short lecturing, Discussion, and Skills practice
		Materials	White board and marker, Multimedia projector, Laptop with ppt,
		Evaluation	 Discuss the catalytic loss cycle of the Chlorine radicals. Show the sources and sinks of stratospheric ClOx and Cly by figure.
		Learning Achievement	 Understand the catalytic ozone loss by Chlorine radicals (ClOx) Write the chemical reaction of the catalytic loss by ClOx radical
		Prescribed/ Basic Book	Atmospheric structure https://www.albany.edu/faculty/rgk/atm101/structur.htm

)

Faculty:	Science	Department:	Central Dept. of
			Hydrology and
			Meteorology
Level:	Master (M.Sc.)	Year/Semester:	III semester
Subject:	Atmospheric Chemistry	Course No.:	Hymet 601
Full	50	Total Period:	30
Marks:			

		Detail Plan of Activ	on for Course Facilitation
apter/ Jnit	Learning Outcomes of the Chapter/Unit	Major Components	Description/Particulars
ospheric e	Identify the	Contents	Polar ozone loss (mechanism)
	mechanism for ozone loss	Objectives	The students will be able to – a)conceptualize the reactions involved in polar ozone loss
		Teaching Methods	Didactic questioning, Short lecturing, Discussion, and Skills practice
		Materials	White board and marker, Multimedia projector, Laptop with ppt,
		Evaluation	Write the mechanism of polar ozone lossWrite the reaction of polar ozone loss
		Learning Achievement	 Understand the mechanism of polar ozone loss List out the reactions of the polar ozone loss.
		Prescribed/ Basic Book	Atmospheric chemistry (http://acmg.seas.harvard.edu/people/faculty/djj/book/)

......Earina Sthapit.....

113

Faculty:	Science	Department:	Central Dept. of
			Hydrology and
			Meteorology
Level:	Master (M.Sc.)	Year/Semester:	III semester
Subject:	Atmospheric Chemistry	Course No.:	Hymet 601
Full	50	Total Period:	30
Marks:			

		Detail Plan of Activ	on for Course Facilitation
apter/ Jnit	Learning Outcomes of the Chapter/Unit	Major Components	Description/Particulars
ospheric e	Identify the	Contents	polar ozone loss (PSC formation)
	mechanism of PSC formation	Objectives	The students will be able to – conceptualize the constituents of PSC formation
		Teaching Methods	Didactic questioning, Short lecturing, Discussion, and Skills practice
		Materials	White board and marker, Multimedia projector, Laptop with ppt,
		Evaluation	 Write about PSC formation Write the chemical name of NAT,NAD and NAM and its combination of in PSC formation
		Learning Achievement	 Understand the mechanism of the PSC formation Draw the Schematic diagram of occurrence of PSC in SH and NH
		Prescribed/ Basic Book	Atmospheric chemistry (http://acmg.seas.harvard.edu/people/faculty/djj/book/)

TRIBHUVAN UNIVERSITY

CENTRAL DEPARTMENT OF HYDROLOGY AND METEOROLOGY <u>TEACHING PLAN</u>

Faculty:	Science	Department:	Central Dept. of Hydrology and Meteorology
Level:	Master (M.Sc.)	Year/Semester:	III semester
Subject:	Atmospheric Chemistry	Course No.:	Hymet 601
Full Marks:	50	Total Period:	30

Detail Plan of Action for Course Facilitation

apter/	Learning	Major	Description/Particulars
Jnit	Outcomes of the	Components	_
	Chapter/Unit		
	Chapter/Onte		
ospheric e	Identify the	Contents	polar ozone loss (chronology of the ozone hole)
	structure chronology	Objectives	The students will be able to –
	of the ozone hole		a)conceptualize the chronology of the ozone hole
		The Mathada	f) visualize the layer Didactic quantianing Short lacturing Discussion and Skills
		Teaching Methods	Didactic questioning, Short lecturing, Discussion, and Skills
			practice
		Materials	White board and marker, Multimedia projector, Laptop with
		1 111111111 5	
			ppt,
		Evaluation	• Write about the chronology of the ozone hole
			 Write the reaction involved in the chronology of the ozone hole
		Learning	• Understand the chronology of the ozone hole
		Achievement	• Draw the Schematic diagram of chronology of the ozone hole
		Prescribed/ Basic	Atmospheric chemistry
		Book	(http://acmg.seas.harvard.edu/people/faculty/djj/book/)
		DUUK	
	1		

TRIBHUVAN UNIVERSITY CENTRAL DEPARTMENT OF HYDROLOGY AND METEOROLOGY

Faculty:	Science	Department:	Central Dept. of
			Hydrology and
			Meteorology
Level:	Master (M.Sc.)	Year/Semester:	III semester
Subject:	Atmospheric Chemistry	Course No.:	Hymet 601
Full	50	Total Period:	30
Marks:			

	Detail Plan of Action for Course Facilitation				
pter/ nit	Learning Outcomes of the Chapter/Unit	Major Components	Description/Particulars		
ne	Identify the air	Contents	Air pollution and ozone		
ition	nollution in	Objectives	 The students will be able to – a) conceptualize the relation of air pollution and ozone b) visualize the concentration layer of ozone associate with pollution 		
		Teaching Methods	Didactic questioning, Short lecturing, Discussion, and Skills practice		
		Materials	White board and marker, Multimedia projector, Laptop with ppt,		
		Evaluation	Write about ozone air pollution.How the concentration of ozone vary the air pollution		
		Learning Achievement	• Understand the relation between the concentration of ozone and air pollution.		
		Prescribed/ Basic Book	Atmospheric Chemistry		

Faculty:	Science	Department:	Central Dept. of Hydrology and Meteorology
Level:	Master (M.Sc.)	Year/Semester:	III semester
Subject:	Atmospheric Chemistry	Course No.:	Hymet 601
Full Marks:	50	Total Period:	30

		Detail Plan of Act	ion for Course Facilitation
pter/ nit	Learning Outcomes of the Chapter/Unit	Major Components	Description/Particulars
ne	Identify the chain	Contents	ozone formation and control strategies
ition	reaction mechanism of ozone formation and strategies	Objectives	 The students will be able to – a) Conceptualize the reaction mechanism of formation and control strategies. b) visualize the trend of concentration of ozone
		Teaching Methods	Didactic questioning, Short lecturing, Discussion, and Skills practice
		Materials	White board and marker, Multimedia projector, Laptop with ppt,
		Evaluation	 Write the cycling of HOx and O3 production in a polluted atmosphere. How ozone concentration simulates by a function of NOx and hydrocarbon emissions?
		Learning Achievement	• Understand the mechanism of formation and control strategies
		Prescribed/ Basic Book	Atmospheric Chemistry

TRIBHUVAN UNIVERSITY

CENTRAL DEPARTMENT OF HYDROLOGY AND METEOROLOGY TEACHING PLAN

Faculty:	Science	Department:	Central Dept. of
			Hydrology and Meteorology
Level:	Master (M.Sc.)	Year/Semester:	III semester
Subject:	Atmospheric Chemistry	Course No.:	Hymet 601
Full Marks:	50	Total Period:	30

	Detail Plan of Action for Course Facilitation			
pter/ nit	Learning Outcomes of the Chapter/Unit	Major Components	Description/Particulars	
ne	Identify the equation	Contents	ozone production, efficiency	
ition	for the ozone production efficiency	tion	 The students will be able to – a) conceptualize the chemical reaction evolve in ozone production efficiency 	
		Teaching Methods	Didactic questioning, Short lecturing, Discussion, and Skills practice	
		Materials	White board and marker, Multimedia projector, Laptop with ppt,	
		Evaluation	Write about ozone production efficiency	
		Learning Achievement	 Understand about the ozone production efficiency Draw the emission and deposition chart of ozone production efficiency 	
		Prescribed/ Basic Book	Atmospheric Chemistry	

Faculty:	Science	Department:	Central Dept. of Hydrology and Meteorology
Level:	Master (M.Sc.)	Year/Semester:	III semester
Subject:	Atmospheric Chemistry	Course No.:	Hymet 601
Full Marks:	50	Total Period:	30

	Detail Plan of Action for Course Facilitation		
pter/ nit	Learning Outcomes of the Chapter/Unit	Major Components	Description/Particulars
rain	Identify the	Contents	Chemical composition of precipitation
	chemical composition of precipitation	Objectives	 The students will be able to – b) conceptualize the constituents of the chemical composition of precipitation
		Teaching Methods	Didactic questioning, Short lecturing, Discussion, and Skills practice
		Materials	White board and marker, Multimedia projector, Laptop with ppt,
		Evaluation	 Write the chemical composition of natural precipitation. Write about SO42-,NO3-, and NH4+ in precipitation
		Learning Achievement	• Understand the chemical composition of precipitation
		Prescribed/ Basic Book	Atmospheric Chemistry

Faculty:	Science	Department:	Central Dept. of Hydrology and Meteorology
Level:	Master (M.Sc.)	Year/Semester:	III semester
Subject:	Atmospheric Chemistry	Course No.:	Hymet 601
Full Marks:	50	Total Period:	30

	Detail Plan of Action for Course Facilitation			
pter/ nit	Learning Outcomes of the Chapter/Unit	Major Components	Description/Particulars	
rain	Identify the effects	Contents	sources of acids, effects of acid rain	
	and trend of acid rain	Objectives	The students will be able to – a) conceptualize the sources of acids: sulfur chemistry	
		Teaching Methods	Didactic questioning, Short lecturing, Discussion, and Skills practice	
		Materials	White board and marker, Multimedia projector, Laptop with ppt,	
		Evaluation	• Write about the sources and effects of acid rain	
		Learning Achievement	• Understand the sources and effect of acid rain	
		Prescribed/ Basic Book	http://acmg.seas.harvard.edu/people/faculty/djj/book/bookchap13.html	

Faculty:	Science	Department:	Central Dept. of
			Hydrology and
			Meteorology

Level:	Master (M.Sc.)	Year/Semester:	III semester
Subject:	Atmospheric Chemistry	Course No.:	Hymet 601
Full Marks:	50	Total Period:	30
Marks:			

	Detail Plan of Act	tion for Course Facilitation
Learning Outcomes of the Chapter/Unit	Major Components	Description/Particulars
Identity emission of	Contents	emission of SO ₂ and NO _x .
SO ₂ and NO _x and its effect during acid rain	Objectives	The students will be able to –
1		• Conceptualize the effect of emission of SO ₂ and NO _x during acid rain.
	Teaching Methods	Didactic questioning, Short lecturing, Discussion, and Skills practice
1	Materials	White board and marker, Multimedia projector, Laptop with ppt,
	Evaluation	• How the emission of SO ₂ and NO _x during acid rain destruct the environment?
	Learning Achievement	• Understand the effect of emission of SO ₂ and NO _x
	Prescribed/ Basic Book	https://hspcb.gov.in/content/ecoclub/Acid_Rain.pdf
	Outcomes of the Chapter/Unit Identity emission of SO ₂ and NO _x and its	Learning Outcomes of the Chapter/UnitMajor ComponentsIdentity emission of SO2 and NOx and its effect during acid rainContentsObjectivesObjectivesTeaching MethodsMaterialsMaterialsEvaluationLearning AchievementPrescribed/ Basic

Faculty:	Science	Department:	Central Dept. of
			Hydrology and
			Meteorology
Level:	Master (M.Sc.)	Year/Semester:	III semester
Subject:	Atmospheric Chemistry	Course No.:	Hymet 601
Full	50	Total Period:	30
Marks:			

		Detail Plan of Action	on for Course Facilitation
apter/ Jnit	Learning Outcomes of the Chapter/Unit	Major Components	Description/Particulars
nistry	Identify the	Contents	Magnetosphere
sol exte	structure and extension of the Magnetosphere	Objectives	 The students will be able to – b) conceptualize the constituents of the Magnetosphere c) visualize the layer
		Teaching Methods	Didactic questioning, Short lecturing, Discussion, and Skills practice
		Materials	White board and marker, Multimedia projector, Laptop with ppt,
		Evaluation	 Write about Magnetosphere. How the behavior and numbers of free electrons and other charged particles in Magnetosphere is different from Ionosphere and Plasmasphere
		Learning Achievement	 Understand the electromagnetic structure of the Magnetosphere Draw the Schematic diagram of Magnetosphere.
		Prescribed/ Basic Book	Atmospheric structure https://www.albany.edu/faculty/rgk/atm101/structur.htm

Faculty:	Science	Department:	Central Dept. of
			Hydrology and
			Meteorology
Level:	Master (M.Sc.)	Year/Semester:	III semester
Subject:	Atmospheric Chemistry	Course No.:	Hymet 601
Full	50	Total Period:	30
Marks:			

		Detail Plan of Actio	on for Course Facilitation
apter/ Jnit	Learning Outcomes of the Chapter/Unit	Major Components	Description/Particulars
nistry	Identify the structure and	Contents	Importance and sources of tropospheric and stratospheric aerosol, volcanic aerosol, desert dust, human made aerosol,
sol exte	extension of the Magnetosphere	Objectives	 The students will be able to – Conceptualize the different types of aerosol and its importance.
		Teaching Methods	Didactic questioning, Short lecturing, Discussion, and Skills practice
		Materials	White board and marker, Multimedia projector, Laptop with ppt,
		Evaluation	 Write the importance and sources of tropospheric and stratospheric aerosol Write the different types of aerosol, explain in brief.
		Learning Achievement	• Understand the importance and different types of aerosol.
		Prescribed/ Basic Book	Atmospheric Chemistry

Faculty:	Science	Department:	Central Dept. of
			Hydrology and
			Meteorology
Level:	Master (M.Sc.)	Year/Semester:	III semester
Subject:	Atmospheric Chemistry	Course No.:	Hymet 601
Full	50	Total Period:	30
Marks:			

		Detail Plan of Actio	on for Course Facilitation
apter/ Jnit	Learning Outcomes of the Chapter/Unit	Major Components	Description/Particulars
nistry Identify the spheric sol Magnetosphere		Contents	Climatic effect of aerosol, the removal of aerosol, aerosol as atmospheric tracers, NASA's aerosol studies
	extension of the	Objectives	The students will be able to – a) conceptualize the properties of aerosol and its studies
		Teaching Methods	Didactic questioning, Short lecturing, Discussion, and Skills practice
		Materials	White board and marker, Multimedia projector, Laptop with ppt,
		Evaluation	Write about climatic effect of aerosol.How aerosol removed from atmosphere?
		Learning Achievement	• Understand the effects and importance of atmospheric aerosol.
		Prescribed/ Basic Book	Atmospheric Chemistry

Prepared By: Earina Sthapit

Tribhuvan University Central Department of Hydrology and Meteorology, Kirtipur, Kathmandu, Nepal <u>TEACHING PLAN</u>

Faculty:	Institute of Science and Technology (IOST)	Department:	Central Department of Hydrology and Meteorology
Level:	Masters	Year/Semester:	Ι
Subject:	Fortran programming / Practical (Compulsory)	Course No.:	Hymet 507
Full Marks:		Total Period:	60 lecture hours (2 Hours per class, 2 class per week)

	Deal Flan of Action for Course Factuation			
apter/	Learning	Major Components	Description/Particulars	
Unit	Outcomes of the			
	Chapter/Unit			
	Chapter/Ohn			
	1. Introduction to	Contents	Computer Languages, The History of the Fortran Language, The	
	computer Language		Evolution of Fortran	
	6 6	Objectives	1. Get an ideal of what computer language is.	
			2. Background of FORTRAN	
		Teaching Methods	lecturing, Discussion, solving errors for each students.	
		Materials	White board and marker, Multimedia presentation.	
		Evaluation	1. What is computer language?	
			2. What is f77, f90, f95 ?	
		Learning	Introduction to computer language.	
		Achievement		
		Prescribed/ Basic	Stephen J. Chapman, Fortran for Scientists and Engineers, Fourth	
		Book	Edition, McGraw-Hill Education, 2018	
		<u> </u>		

apter/ J nit	Learning Outcomes of the Chapter/Unit	Major Components	Description/Particulars
0	Basic Elements of Fortran	Contents	The Fortran Character Set, The Structure of a Fortran Program, Constants and Variables, Assignment Statements and Arithmetic Calculations, Intrinsic Functions, Initialization of Variables, The IMPLICIT NONE Statement, Program Examples
		Objectives	 Introduction To FORTRAN Know basic elements of FORTRAN Language
		Teaching Methods	lecturing, Discussion, solving errors for each students.
		Materials	White board and marker, Multimedia presentation,
		Evaluation	 What are characters used in FORTRAN. What is Constant, variable? Write An arithmetic expression in FORTRAN code. What is intrinsic function? Write a basic FORTRAN code
		Learning Achievement	Write basic FORTRN code.
		Prescribed/ Basic Book	Stephen J. Chapman, Fortran for Scientists and Engineers, Fourth Edition, McGraw-Hill Education,2018

hapter Unit	Learning Outcomes of the Chapter/Unit	Major Components	Description/Particulars
hree	 Branch program using conditional arguments. 	Contents	Introduction to Top-Down Design Techniques, Logical Constants, Variables, and Operators, The Block IF Construct, The ELSE and ELSE IF Clauses, The SELECT CASE Construct
		Objectives	 Introduction To splitting program to section using arguments. Use logic to solve problems
		Teaching Methods	lecturing, Discussion, solving errors for each students.
		Materials	White board and marker, Multimedia presentation,

hapter Unit	Learning Outcomes of the Chapter/Unit	Major Components	Description/Particulars
		Evaluation	 What is a logical operator? Compare a number if it is even or odd. Write a code that uses ELSE IF Clauses.
		Learning Achievement	Handle real time logical questions in code.
		Prescribed/ Basic Book	Stephen J. Chapman, Fortran for Scientists and Engineers, Fourth Edition, McGraw-Hill Education, 2018

Shapter / Unit	Learning Outcomes of the Chapter/Unit	Major Components	Description/Particulars
our	Writing Piece of Codes For repeat ion , Loops	Contents	The While Loop, The DO WHILE Loop, The CYCLE and EXIT Statements, Named Loops, Nesting Loops and Block IF Constructs
		Objectives	 Write codes that is used to handle repeated section. Learn different ways of writing the loop. Pass the control of the program in different sections in loop.
		Teaching Methods	lecturing, Discussion, solving errors for each students.
		Materials	White board and marker, Multimedia presentation,
		Evaluation	 Write a code to display a series of numbers from 1 to Write a code that uses Do loop. How to terminate While loop? Write a condition to exit from a loop.
		Learning Achievement	 Know what loops are and when to use. Learn how to write program with loop.
		Prescribed/ Basic Book	Stephen J. Chapman, Fortran for Scientists and Engineers, Fourth Edit McGraw-Hill Education,2018

Chapter / Unit	Learning Outcomes of the Chapter/Unit	Major Components	Description/Particulars
Fifth	Pass input / output through the components of computer	Contents	Formats and Formatted WRITE Statements, Formatted READ Statements, An Introduction to Files and File Processing
		Objectives	 Write codes that handle different display patterns of a Real numbers, integers and character. Use different read and write techniques in Fortran. Pass content in and out of program using files.
		Teaching Methods	lecturing, Discussion, solving errors for each students.
		Materials	White board and marker, Multimedia presentation,
		Evaluation	 What is a way to represent real number with one decimal place? How to read a string of numbers? What is the meaning of OPEN statement? What is the meaning of CLOSE statement? How to Pass a file input in READ and WRITE statement?
		Learning Achievement	 Use technique to format the numbers and characters. Handle files to give in input and give out output from a Program.
		Prescribed/ Basic Book	Stephen J. Chapman, Fortran for Scientists and Engineers, Fourth Edition, McGraw-Hill Education,2018

Chapter / Unit	Learning Outcomes of the Chapter/Unit	Major Components	Description/Particulars
Sixth	Using Array as a sequence of number.	Contents	Declaring Arrays, Using Array Elements in Fortran Statements, Input and Output of Array Elements, 2D or Rank 2 Arrays, Multidimension or Rank n Arrays, Allocatable Arrays
		Objectives	 Learn what is an array. Write an array.

Chapter / Unit	Learning Outcomes of the Chapter/Unit	Major Components	Description/Particulars
			 Using an array of numbers. Declare different dimension of array.
		Teaching Methods	lecturing, Discussion, solving errors for each students.
		Materials	White board and marker, Multimedia presentation,
		Evaluation	 What does the following lines designate integer, dimension(5) :: arr1 arr1 = (/1,2,3,4,5/)
			2. What is 2D array?3. What is an Allocatable array?
		Learning Achievement	 Write a sequence of numbers. Manipulate a set of number. (Write and Read)
		Prescribed/ Basic Book	Stephen J. Chapman, Fortran for Scientists and Engineers, Fourth Edition, McGraw-Hill Education,2018

Prepared By: Netra Jit Kadka

Tribhuvan University Central Department of Hydrology and Meteorology, Kirtipur, Kathmandu, Nepal <u>TEACHING PLAN</u>

Faculty:	Institute of Science and Technology (IOST)	Department:	Central Department of Hydrology and Meteorology
Level:	Masters	Year/Semester:	II
Subject:	Fortran programming / Practical (Compulsory)	Course No.:	Hymet 557
Full Marks:		Total Period:	60 lecture hours (2 Hours per class, 2 class per week)

Detail I fail of Action for Course Facilitation			
Chapter/ Unit	Learning Outcomes of the Chapter/Unit	Major Components	Description/Particulars
One	Use Sub programs	Contents	Subroutines, Module, Functions
	 Function Subroutine Module 	Objectives	1. How to code subprograms.
		Teaching Methods	lecturing, Discussion, solving errors for each students.
		Materials	White board and marker, Multimedia presentation.
		Evaluation	 Write a function to find cube root ? What is a module, how to call it? How to write a subroutine?
		Learning Achievement	Able to code function, subroutine, module.
		Prescribed/ Basic Book	Stephen J. Chapman, Fortran for Scientists and Engineers, Fourth Edition, McGraw-Hill Education,2018

Chapter/ Unit	Learning Outcomes of the Chapter/Unit	Major Components	Description/Particulars
Гwo	Knowledge of derived types	Contents	Introduction to Derived Data Types, Declaring Derived Data Types in Modules, Dynamic Allocation of Derived Data Types
		Objectives	1. Use technique of Structure
		Teaching Methods	lecturing, Discussion, solving errors for each students.
		Materials	White board and marker, Multimedia presentation.
		Evaluation	1. Declare a Derived type (structure)?
		Learning Achievement	Introduction to a basic element of OOP.
		Prescribed/ Basic Book	Stephen J. Chapman, Fortran for Scientists and Engineers, Fourth Edition, McGraw-Hill Education,2018

Chapter/ Unit	Learning Outcomes of the Chapter/Unit	Major Components	Description/Particulars
Three F	Project I 1. How to calculate ST.DEV 2. How to calculate Coeff of variation.	Contents	coefficient of variations using Daily precipitation data from all over Nepal
		Objectives	 Work with Data Write a code to for real case.
		Teaching Methods	lecturing, Discussion, solving errors for each students.
		Materials	White board and marker, Multimedia presentation.
		Evaluation	1. Use the given code to calculate the coefficient of variations.
		Learning Achievement	Write some lines of code to do a real case study.
		Prescribed/ Basic Book	Stephen J. Chapman, Fortran for Scientists and Engineers, Fourth Edition, McGraw-Hill Education,2018

	T		
Chapter/	Learning	Major Components	Description/Particulars
Unit	Outcomes of the		
~ :			
	Chapter/Unit		
Three	Project II	Contents	linear trends for monthly, seasonal and annual distributions
	J		using Daily precipitation data from all over Nepal
	1. How to		
	calculate	Objectives	1. Work with Data
	linear		2. Write a code for real case.
	regression	Teaching Methods	lecturing, Discussion, solving errors for each students.
	Write Code in		
1	Fortran as needed	Materials	White board and marker, Multimedia presentation.
1			
Í Í		Evaluation	1. Use the given code to calculate the linear trends for
1			monthly, seasonal and annual case.
1		Learning	Write some lines of code to do a real case study.
		Achievement	
l '			
		Prescribed/ Basic	Stephen J. Chapman, Fortran for Scientists and Engineers, Fourth
1		Book	Edition, McGraw-Hill Education, 2018
		DUUK	
· · · · · · · · · · · · · · · · · · ·	<u>ــــــــــــــــــــــــــــــــــــ</u>		

Prepared by: Netra Jit Khadka

TRIBHUVAN UNIVERSITY CENTRAL DEPARTMENT OF HYDROLOGY AND METEOROLOGY, KRITIPUR, KATHMANDU, NEPAL <u>TEACHING PLAN</u>

Faculty:	Science	Department: central Depart Hydrology and Meteorology	
Level:	Master	Year/Semester: I semester	
Subject:	Hydrology	Course No.: Hymet 505	
Full Marks:	50	Total Period: 30	

pter/ nit	Learning Outcomes of the Chapter/Unit	Major Components	Description/Particulars
er	ce of Hydrology • Briefing about syllabus • General	Contents	Basic component of hydrology
lce		Objectives	 The students will be able to - (a) Concepts about hydrological components (b) Knowledge about hydrological cycle
		Teaching Methods	Didactic questioning, Short lecturing
	components of	Materials	Power point presentation through online
	HydrologyHydrological cycle	Evaluation	 What is hydrology? What are the major components of hydrology? What did you understand by hydrological cycle? What is the driving force for the hydrological cycle?
		Learning Achievement	 Introduction of Hydrology General components of Hydrology Hydrological cycle
		Prescribed/ Basic Book	K. Subramanya, Engineering Hydrology, New Delhi, India.

TRIBHUVAN UNIVERSITY CENTRAL DEPARTMENT OF HYDROLOGY AND METEOROLOGY, KRITIPUR, KATHMANDU, NEPAL <u>TEACHING PLAN</u>

Faculty:	Science	Department: cer Hydrology and I	ntral Department of Meteorology
Level:	Master	Year/Semester:	I semester
Subject:	Hydrology	Course No.:	Hymet 505
Full Marks:	50	Total Period:	30

	Detail Plan of Action for Course Facilitation			
pter/ nit	Learning Outcomes of the Chapter/Unit	Major Components	Description/Particulars	
er	Detail study of	Contents	Basic component of hydrology	
 Hydrological cycle Factors affecting hydrological 	Objectives	The students will be able to - (a) Factors affecting hydrology (b) Methods of Rainfall estimation		
	hydrological	Teaching Methods	Didactic questioning, Short lecturing	
	cycle Rainfall 	Materials	Power point presentation through online	
	estimation	Evaluation	 What is infiltration? List out the factor which affects the hydrological cycle? What did you understand by watershed? What is isohyet? 	
		Learning Achievement	 Detail knowledge of hydrological components Understanding of factors affects in hydrology Different methods of rainfall estimation 	
		Prescribed/ Basic Book	K. Subramanya, Engineering Hydrology, New Delhi, India.	

TRIBHUVAN UNIVERSITY CENTRAL DEPARTMENT OF HYDROLOGY AND METEOROLOGY, KRITIPUR, KATHMANDU, NEPAL <u>TEACHING PLAN</u>

Faculty:	Science	Department: central Department of Hydrology and Meteorology	
Level:	Master	Year/Semester:	I semester
Subject:	Hydrology	Course No.:	Hymet 505
Full Marks:	50	Total Period:	30

Detail Plan of Action for Course Facilitation			
pter/ nit	Learning Outcomes of the Chapter/Unit	Major Components	Description/Particulars
er nce	 Introduction about water balance Major components of water balance equation Mechanism of precipitation Different methods 	Contents Objectives Teaching Methods Materials	Water balance equation The students will be able to - (c) Understand about water balance equation (d) Mechanism of precipitation Didactic questioning, Short lecturing
	• Different methods of estimation of evapotranspiration	Evaluation	 Power point presentation through online What is water balance? List out the factor which affects the hydrological cycle? What did you understand by watershed? What is isohyet?
		Learning Achievement Prescribed/ Basic Book	 Detail knowledge of hydrological components Understanding of factors affects in hydrology Different methods of rainfall estimation K. Subramanya, Engineering Hydrology, New Delhi, India.

TRIBHUVAN UNIVERSITY CENTRAL DEPARTMENT OF HYDROLOGY AND METEOROLOGY, KRITIPUR, KATHMANDU, NEPAL <u>TEACHING PLAN</u>

Faculty:	Science	Ĩ	Department: central Department of Hydrology and Meteorology	
Level:	Master	Year/Semester:	I semester	
Subject:	Hydrology	Course No.:	Hymet 505	
Full Marks:	50	Total Period:	30	

Detail Plan of Action for Course Facilitation			
pter/ nit	Learning Outcomes of the Chapter/Unit	Major Components	Description/Particulars
er nce	• Brief about Infiltration	Contents	Infiltration
	 Factors affecting infiltration Measurements of infiltration Infiltration indices 	Objectives	 The students will be able to - (a) Understand about infiltration (b) Understand different measurements of infiltration and infiltration indices
		Teaching Methods	Didactic questioning, Short lecturing
		Materials	Power point presentation through online
		Evaluation	 What is infiltration? List out the factor which affects infiltrations? What are the methods of measurements of infiltration? What are infiltration indices?
		Learning Achievement	 Detail knowledge of infiltration Understanding of factors affects infiltration Detail knowledge about infiltration indices
		Prescribed/ Basic Book	K. Subramanya, Engineering Hydrology, New Delhi, India.

Detail Plan of Action for Course Facilitation

Prepared By Anita TuiTui

Lesson Plan – 01

Institute:	Institute of Science and Technology, TU	Date:	
Department:	Central Department of Hydrology and Meteorology	Time:	
Subject:	Cloud Physics (Hymet-504)	Full Marks:	50
Credit hrs:	2 (30 Lecture hrs.)	Level:	M.Sc.1 st Sem.
Topic:	Introduction	Period:	First
Instructor:	Ram Hari Acharya	Unit:	One

Objectives:

At the end of the topic, students will be able to:

- Conceptualize the Course credit and total marks coverage
- Visualize the course of contents
- Describe the importance and scope of Cloud physics

Resources:

• Computer with internet facility and presentation slides, White board and marker

Activities:

- Attendance (5mins)
- Warmup the class with introducing each other's with sharing their aim and hobbies (10mins)
- Slide share and describe the overall course structures (10mins)
- Introduce the class about the course books and educational sites (5)
- Discussion on the importance and scope of cloud physics (10min)
- Address all the queries from students (10mins)

Evaluation: (8mins

- Ask questions to some selected students and evaluate their response;
- Q1. What do you think about the formation of cloud?

Q2. How can you interpret the role of cloud to sustain Nepalese Agroeconomy.

Assignment: (2min)

• Describe the importance of clouds in earth surface water budget?

Text Books and References:

- Pruppacher H. R., and Klett, J.D., Microphysics of Clouds and Precipitation, Kluwler Academic Publishers, Netherland, 2000.
- Mason, B. J. The physics of clouds, Oxford University Press, 1971.
- Seinfeld John H. and Pandis Spyros N., Atmospheric Chemistry and Physics from air pollution to climate change, A Wiley-IntersciencePublication, 1997.
- Mason, B. J., Clouds and rain making, Cambridge University Press, 1962.
- WMO. (1969). International Cloud Atlas: Abridged Atlas. World Meteorological Organization.
- <u>https://isccp.giss.nasa.gov/role.html</u>

Lesson Plan – 02

Institute:	Institute of Science and Technology, TU	Date:	
Departmen t:	Central Department of Hydrology and Meteorology	Time:	
Subject:	Cloud Physics (Hymet-504)	Full Marks:	50
Credit hrs:	2 (30 Lecture hrs.)	Level:	M.Sc.1 st Sem.
Topic:	Introduction	Period:	First
Instructor:	Ram Hari Acharya	Unit:	One

Objectives:

At the end of the topic, students will be able to:

- Identify and explain the major 10 types of cloud based on their altitude and appearance
- Explain what clouds are made of and their role in weather

Resources:

• Computer with internet facility and presentation slides, White board and marker

Activities:

- Attendance (5mins)
- Feedback to the assignment(10mins)
- Describe on the identification and classification schemes of cloud (15mins)
- Discussion on cloud types based slide presentations and real time observation (15min)
- Suggest the solutions for student's queries related to the topic (10mins)

Evaluation: (8mins

- Ask questions to some selected students and evaluate their response;
- Q1. Amongst the 10 types of cloud, how can you identify rain-making cloud?

Q2. Amongst the 10 types of cloud, which clouds can be classified under vertically developed cloud?

Q3. Which clouds are associated with fair weather?

Q4. Which cloud produce continuous rainfall and which one yield heavy shower with shorter duration.

Assignment:

• Write a short paragraph on cloud condensation nuclei (CCN)? Describe in brief about the formation of cloud?

Reference:

- Seinfeld John H. and Pandis Spyros N., Atmospheric Chemistry and Physics from air pollution to climate change
- Liou, K. N. (1992). Radiation and cloud processes in the atmosphere. Theory, observation, and modeling.
- WMO. (1969). International Cloud Atlas: Abridged Atlas. World Meteorological Organization.
- <u>https://isccp.giss.nasa.gov/role.html</u>

Lesson Plan – 03

Institute:	Institute of Science and Technology, TU	Date:	
Departmen t:	Central Department of Hydrology and Meteorology	Time:	
Subject:	Cloud Physics (Hymet-504)	Full Marks:	50
Credit hrs:	2 (30 Lecture hrs.)	Level:	M.Sc.1 st Sem.
Topic:	Introduction	Period:	First
Instructor:	Ram Hari Acharya	Unit:	One

Objectives:

At the end of the topic, students will be able to:

- Describe some important cloud species.
- Explain the importance of cloud in the atmosphere.
- Write different processes and mechanisms involved in cloud formation.

Resources:

• Computer with internet facility and presentation slides, White board and marker

Activities:

- Attendance (5mins)
- Feed back to the assignment(10mins)
- Describe some important cloud species through tables and figures in slides(10)
- Explain in brief importance of cloud in the atmospheric processes and the associate Earth's surface climate.(10min)
- Discussion on the basic mechanisms that are involved in cloud formation (5mins)
- Discussion on student's queries related to the topic (10mins)

Evaluation: (8mins)

- Ask questions to some selected students and evaluate their response;
- Q1. What are the different methods of cloud formation?

Q2. What are the possible controls of cloud formation?

Assignment: (2mins)

• Write an essay on importance of cloud formation in earth atmospheric system?

<u>Reference:</u>

- Seinfeld John H. and Pandis Spyros N., Atmospheric Chemistry and Physics from air pollution to climate change
- Liou, K. N. (1992). Radiation and cloud processes in the atmosphere. Theory, observation, and modeling.
- <u>https://isccp.giss.nasa.gov/role.html</u>

Institute:	Institute of Science and Technology, TU	Date:	
Department:	Central Department of Hydrology and Meteorology	Time:	
Subject:	Cloud Physics (Hymet-504)	Full Marks:	50
Credit hrs:	2 (30 Lecture hrs.)	Level:	M.Sc.1 st Sem.
Topic:	Fundamental concepts of thermodynamic	Period:	First
Instructor:	Ram Hari Acharya	Unit:	Two

Objectives:

At the end of the topic, students will be able to:

- Explain the importance of thermodynamics in cloud physics
- Describe the equation of state of dry air
- State and drive First law of thermodynamic.

Resources:

• Computer with internet facility and presentation slides, White board and marker

Activities:

- Attendance (5mins)
- Feed back to the assignment(10mins)
- Describe the Equation of state of dry air (5)
- Step wise derivation First law of thermodynamic(20)
- Discussion on student's queries related to the topic (10mins)

Evaluation: (8mins)

- Drive the possible results for the following cases using first law of thermodynamics; (a) Isobaric process
 - (b) Isothermal process
 - (c) Isochoric process
- Cross check the results between students followed by teacher

Assignment: (2mins)

• What is potential temperature? Drive and expression $\theta = T\left(\frac{1000hPa}{p}\right)^k$ using first law of thermodynamic under adiabatic process.

- Atmospheric thermodynamics (Vol. 6). Springer Science & Business Media.
- Tsonis, A. A. (2002). An introduction to atmospheric thermodynamics. Cambridge University Press.

Institute:	Institute of Science and Technology, TU	Date:	
Department:	Central Department of Hydrology and Meteorology	Time:	
Subject:	Cloud Physics (Hymet-504)	Full Marks:	50
Credit hrs:	2 (30 Lecture hrs.)	Level:	M.Sc.1 st Sem.
Topic:	Fundamental concepts of thermodynamic	Period:	First
Instructor:	Ram Hari Acharya	Unit:	Two

Objectives:

At the end of the topic, students will be able to:

- Write the definition and concept of entropy.
- Drive Second law of thermodynamic.
- Conceptualize the importance of 2nd law of thermodynamics and entropy in the atmosphere

Resources:

• Computer with internet facility and presentation slides, White board and marker

Activities:

- Attendance (5mins)
- Feed back to the assignment(10mins)
- Describe Entropy & Second law of thermodynamic with step wise derivation (15min)
- Discussion on the importance of Entropy & Second law of thermodynamic in the atmospheric study (10min)
- Discussion on student's queries related to the topic (10mins)

Evaluation: (8mins)

- Based on the figure provided (Figure 1.) give the reasons for the following questions.
 (a) Which system provides high energy photons?
 - (b) Which system is responsible for the high entropy created in the atmosphere? Why?

Assignment: (2mins)

- Write a paragraph on "the atmosphere can be considered as a giant thermodynamic engine"
- Write briefly on the Isobaric and Adiabatic processes.

- Liu et al.(2011);Understanding Atmospheric Behaviour in Terms of Entropy: A Review of Applications of the Second Law of Thermodynamics to Meteorology Iribarne, J. V., & Godson, W. L. (Eds.). (2012).
- Atmospheric thermodynamics (Vol. 6). Springer Science & Business Media.

Institute:	Institute of Science and Technology, TU	Date:	
Department:	Central Department of Hydrology and Meteorology	Time:	
Subject:	Cloud Physics (Hymet-504)	Full Marks:	50
Credit hrs:	2 (30 Lecture hrs.)	Level:	M.Sc.1 st Sem.
Topic:	Fundamental concepts of thermodynamic	Period:	First
Instructor:	Ram Hari Acharya	Unit:	Two

Objectives:

At the end of the topic, students will be able to:

- Identify and explain thermodynamic variables like;
 - (a) Extensive and intensive variables,
 - (b) Vapor pressure & saturation vapor pressure.
- Describe the concept of Clauius-Clapeyron equation

Resources:

• Computer with internet facility and presentation slides, White board and marker

Activities:

- Attendance (5mins)
- Feed back to the assignment(10mins)
- Discussion of different thermodynamics variables and concepts; (15min) (a)Atmospheric thermodynamic state, (b)Thermodynamic equilibrium, (c)Extensive and intensive variables, (d)Vapor pressure & Saturation vapor pressure, and others
- Discussion on Clauius-Clapeyron equation (10min)
- Discussion on student's queries related to the topic (10mins)

Evaluation: (8mins)

- Distinguish whether the following variables are extensive or intensive in natures:
 - (i) Pressure, density, Specific entropy
 - (ii) Equation of state $p = \rho RT$
- What are open and closed systems? If there is no exchange of mass but immaterial exchange happens in the system, what type of system is it?
- Do you here about Intrinsic and extrinsic variables. What type of variable is terrestrial emission?

Assignment: (2mins)

• Write briefly on the Isobaric and Adiabatic processes.

Reference:

- Seinfeld John H. and Pandis Spyros N., Atmospheric Chemistry and Physics from air pollution to climate change
- Liou, K. N. (1992). Radiation and cloud processes in the atmosphere. Theory, observation, and modeling.

Lesson Plan – 07

Institute:	Institute of Science and Technology, TU	Date:	
Department:	Central Department of Hydrology and Meteorology	Time:	
Subject:	Cloud Physics (Hymet-504)	Full Marks:	50
Credit hrs:	2 (30 Lecture hrs.)	Level:	M.Sc.1 st Sem.
Торіс:	Thermodynamic processes involved in cloud and fog formation	Period:	First
Instructor:	Ram Hari Acharya	Unit:	Two

Objectives:

At the end of the topic, students will be able to:

- Explain the basic concept of cloud and fog formation.
- Conceptualize the Isobaric and Adiabatic cooling of moist air in the atmosphere.

Resources:

• Computer with internet facility and presentation slides, White board and marker

Activities:

- Attendance (5mins)
- Feed back to the assignment(10mins)
- Discussion on the basic concepts on cloud and fog formation.(15mins)
- Theoretical description of Isobaric and Adiabatic processes involved in cooling of moist air in the atmosphere(10mins)
- Discussion on student's queries related to the topic (10mins)

Evaluation: (8mins)

- Can clouds be formed below the freezing level?
- Can you guess that either the isobaric or adiabatic processes can best describe the vertical development of cloud?

Assignment: (2mins)

• What do you mean by thermodynamic diagram? Describe any four the significant levels.

Reference:

• Seinfeld John H. and Pandis Spyros N., Atmospheric Chemistry and Physics from air pollution to climate change

Institute:	Institute of Science and Technology, TU	Date:	
Department:	Central Department of Hydrology and Meteorology	Time:	
Subject:	Cloud Physics (Hymet-504)	Full Marks:	50
Credit hrs:	2 (30 Lecture hrs.)	Level:	M.Sc.1 st Sem.
Торіс:	Thermodynamic processes involved in cloud and fog formation	Period:	First
Instructor:	Ram Hari Acharya	Unit:	Two

Objectives:

At the end of the topic, students will be able to:

- Describe the physics of Isobaric and Adiabatic cooling of moist air in the atmosphere
- Drive an relation that, dew-point temperature (T_d) as a function of the prevailing (T_o) and relative humidity(RH) in isobaric cooling process.
- Compute the equations for cloud condensation level (h_{LCL}) and cloud condensation temperature (T_L)

Resources:

• Computer with internet facility and presentation slides, White board and marker

Activities:

- Attendance (5mins)
- Feed back to the assignment(10mins)
- Describe Isobaric and Adiabatic processes involved in cooling of moist air with mathematical description. (15mins)
- Demonstrate the thermodynamic diagram to identify the significant levels (10min)
- Discussion on student's queries related to the topic (10mins)

Evaluation: (8mins)

- Define (i) dew point temperature, (ii) Cloud condensation level
- What could be the dew point temperature at 850mb pressure if an air parcel has cooled isobarically at temperature of 5°C to reach 50% RH?
- Finding the cloud condensation level (h_{LCL}) and cloud condensation temperature (T_L) for the given sounding data/plot (Figure 2.).

Assignment: (2mins)

• If the air parcel is lifted beyond the h_{LCL} what could be the expression for lapse rate Γ_s in terms of latent heat of condensation $(-H_s)$?

Reference:

• Seinfeld John H. and Pandis Spyros N., Atmospheric Chemistry and Physics from air pollution to climate change

Lesson Plan – 09

Institute:	Institute of Science and Technology, TU	Date:	
Department:	Central Department of Hydrology and Meteorology	Time:	
Subject:	Cloud Physics (Hymet-504)	Full Marks:	50
Credit hrs:	2 (30 Lecture hrs.)	Level:	M.Sc.1 st Sem.
Торіс:	Thermodynamic processes involved in cloud and fog formation	Period:	First
Instructor:	Ram Hari Acharya	Unit:	Two

Objectives:

At the end of the topic, students will be able to:

- Describe the cooling with entrainment process in the atmosphere and cloud
- Explain some of the importance and effects of entrainment process
- Explain entrainment equation and cloud lapserate

<u>Resources</u>:

• Computer with internet facility and presentation slides, White board and marker

Activities:

- Attendance (5mins)
- Feed back to the assignment(10mins)

- Discussion on the general concept of entrainment process in the atmosphere and cloud in cooling of moist air.(10mins)
- Describe entrainment equation (5min)
- Teacher-student interaction on "the importance and effects of entrainment process" (10min)
- Discussion on student's queries related to the topic (10mins)

Evaluation: (8mins)

- Define entrainment process
- Can you modify the cloud lapserate with the introduction of entrainment process

Assignment: (2mins)

• What do you mean by the detrainment process? Describe how the entrainment is related to the RH.

Reference:

• Rooy et.al.,(2012); Review Article Entrainment and detrainment in cumulus convection: an overview

Institute:	Institute of Science and Technology, TU	Date:	
Department:	Central Department of Hydrology and Meteorology	Time:	
Subject:	Cloud Physics (Hymet-504)	Full Marks:	50
Credit hrs:	2 (30 Lecture hrs.)	Level:	M.Sc.1 st Sem.
Торіс:	Thermodynamic processes involved in cloud and fog formation	Period:	First
Instructor:	Ram Hari Acharya	Unit:	Two

Objectives:

At the end of the topic, students will be able to:

• Drive a mathematical relation of cloud formation

Resources:

• Computer with internet facility and presentation slides, White board and marker

Activities:

- Attendance (5mins)
- Feed back to the assignment(10mins)
- Revise shortly the Adiabatic and Entrainment processes in cooling of the atmospheric moisture (5min)
- Describe the derivation processes and steps on 'simplified mathematical description of cloud formation'(20min)
- Discussion on student's queries related to the topic (10mins)

Evaluation: (8mins)

- Define entrainment process
- Modify the cloud lapserate with the introduction of entrainment process

Assignment: (2mins)

• Does the entrainment process also alter in mixing ratio? If so, what could be the expression for the rate of change of water vapor mixing ratio within the air parcel, drive it.

- <u>https://journals.ametsoc.org/jas/article/47/8/1012/22753</u>
- Rooy et.al.,(2012); Review Article Entrainment and detrainment in cumulus convection: an overview

Institute:	Institute of Science and Technology, TU	Date:	
Department:	Central Department of Hydrology and Meteorology	Time:	
Subject:	Cloud Physics (Hymet-504)	Full Marks:	50
Credit hrs:	2 (30 Lecture hrs.)	Level:	M.Sc.1 st Sem.
Topic:	Growth of cloud droplets	Period:	First
Instructor:	Ram Hari Acharya	Unit:	Two

Objectives:

At the end of the topic, students will be able to:

- Describe the important factors the determine the cloud droplet growth
- Write in detail about the growth of an individual cloud droplet by the diffusion of water vapor

<u>Resources</u>:

• Computer with internet facility and presentation slides, White board and marker

Activities:

- Attendance (5mins)
- Feed back to the assignment(10mins)
- Describe different factors that determine the cloud droplet growth.(5mins)
- Describe in details about the growth of an individual cloud droplet by diffusional process with considering the vapor concentration and surface area method (20min)
- Discussion on student's queries related to the topic (10mins)

Evaluation: (8mins)

• How vaper concentration gradient and vapor pressure gradient exist in the atmosphere and what could be its impact in cooling process for creating favorable environment on cloud droplet growth.

Assignment: (2mins)

• Derive an expression for the growth rate of individual cloud droplet in term of mass or radius.

- https://journals.ametsoc.org/jas/article/24/6/688/17343/Cloud-Droplet-Growth-by-Collection
 https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.49708837603

Institute:	Institute of Science and Technology, TU	Date:	
Department :	Central Department of Hydrology and Meteorology	Time:	
Subject:	Cloud Physics (Hymet-504)	Full Marks:	50
Credit hrs:	2 (30 Lecture hrs.)	Level:	M.Sc.1 st Sem.
Topic:	Growth of cloud droplets	Period:	First
Instructor:	Ram Hari Acharya	Unit:	Two

Objectives:

At the end of the topic, students will be able to:

Describe the growth of an individual cloud droplet by Bergeron process and Collision and coalescence process

<u>Resources</u>:

• Computer with internet facility and presentation slides, White board and marker

Activities:

- Attendance (5mins)
- Feed back to the assignment(10mins)
- Describe both the Bergeron process and Collision and coalescence process (10min)
- Teacher followed Student-Student interaction on the mechanism of "Bergeron process and Collision and coalescence process" (15min)
- Discussion on student's queries related to the topic (10mins)

Evaluation: (10mins)

• Which process is most appropriate for droplet growth in shallow layer cloud?

Assignment: (2mins)

• How do you define droplets population? Which thermodynamic process is most dominant in droplets growth?

• Zhang, B., Zhu, M., Wang, C., & Guan, X. (2012). Analysis of Cloud Droplets Growth and Phase Transition Radiation Process. Energy Procedia, 16, 1003-1008.

Institute:	Institute of Science and Technology, TU	Date:	
Department :	Central Department of Hydrology and Meteorology	Time:	
Subject:	Cloud Physics (Hymet-504)	Full Marks:	50
Credit hrs:	2 (30 Lecture hrs.)	Level:	M.Sc.1 st Sem.
Topic:	Growth of cloud droplets	Period:	First
Instructor:	Ram Hari Acharya	Unit:	Two

Objectives:

At the end of the topic, students will be able to:

- Explain and write the theory of growth of droplets population
- Describe Cloud condensation nuclei (CCN) mathematically

Resources:

• Computer with internet facility and presentation slides, White board and marker

Activities:

- Attendance (5mins)
- Feed back to the assignment(5mins)
- Describe the theory of growth of droplets population in term of production (P) and condensation (c)(20mins)
- Describe Cloud condensation nuclei (CCN) mathematically (10min)
- Discussion on student's queries related to the topic (10mins)

Evaluation: (8mins)

- Define cloud condensation nuclei (CCN)
- What are the sources of aerosols in the context of your region?

Assignment: (2mins)

• Drive the solution for a *thermodynamic va* Q₁.

Reference:

• <u>https://theculturetrip.com/asia/nepal/articles/why-is-kathmandu-in-the-midst-of-a-pollution-crisis/#:~:text=A%20meeting%20held%20at%20the,projects%20(road%20expansion%20and%20a</u>

• Saud, B., & Paudel, G. (2018). The threat of ambient air pollution in Kathmandu, Nepal. Journal of environmental and public health, 2018.

Institute:	Institute of Science and Technology, TU	Date:	
Department:	Central Department of Hydrology and Meteorology	Time:	
Subject:	Cloud Physics (Hymet-504)	Full Marks:	50
Credit hrs:	2 (30 Lecture hrs.)	Level:	M.Sc.1 st Sem.
Topic:	Hydrometeors	Period:	First
Instructor:	Ram Hari Acharya	Unit:	Three

Objectives:

At the end of the topic, students will be able to:

- Define hydrometeors
- Describe hydrometeors (liquid or solid) that are suspended in air
- Differentiate fog, haze and mist.

Resources:

• Computer with internet facility and presentation slides, White board and marker

Activities:

- Attendance (5mins)
- Feed back to the assignment(10mins)
- Introduction on hydrometeors (5min)
- Discussion on formation and characteristics of suspended hydrometeors(20min)
- Discussion on student's queries related to the topic (10mins)

Evaluation: (8mins)

- Ask questions to some selected students and evaluate their response;
- Q1.What difference could you expect between haze, mist and fog?

Q2.What could be the necessary condition for the formation of ice-fog and radiation fog?

Assignment: (2mins)

• Choose a location which usually have foggy morning and collect the temperature and relative humidity data for one year. Analyzed such parameters and compare for foggy and clear day.

Reference:

• Shrestha, S., Moore, G. A., & Peel, M. C. (2018). Trends in winter fog events in the Terai region of Nepal. Agricultural and Forest Meteorology, 259, 118-130.

Institute:	Institute of Science and Technology, TU	Date:	
Department:	Central Department of Hydrology and Meteorology	Time:	
Subject:	Cloud Physics (Hymet-504)	Full Marks:	50
Credit hrs:	2 (30 Lecture hrs.)	Level:	M.Sc.1 st Sem.
Topic:	Hydrometeors	Period:	First
Instructor:	Ram Hari Acharya	Unit:	Three

Objectives:

At the end of the topic, students will be able to:

- Describe both solid and liquid types of precipitation
- Explain the necessary condition for freezing rain and formation of rime
- Distinguish the types of clouds in association with each hydrometeors

Resources:

• Computer with internet facility and presentation slides, White board and marker

Activities:

- Attendance (5mins)
- Feed back to the assignment(10mins)
- Introduction on both solid and liquid form of hydrometeors that can reach the ground surface (15min)
- Description of hydrometeors that are associated cloud types (10min)
- Discussion on student's queries related to the topic (10mins)

Evaluation: (8mins)

- Ask questions to some selected students and evaluate their response;
- Q1. What are snow pellets and how can you distinguish them from hail?
- Q2. What is diamond dust? How can you distinguish it in the atmosphere?

Assignment: (2mins)

• How the structure of snow crystal get formed? Describe the physical processes involved in such process.

Reference:

• <u>https://www.noaa.gov/stories/how-do-snowflakes-form-science-behind-snow#:~:text=A%3A%20A%20snowflake%20begins%20to,That's%20the%20short%20answer.</u>

Institute:	Institute of Science and Technology, TU	Date:	
Department:	Central Department of Hydrology and Meteorology	Time:	
Subject:	Cloud Physics (Hymet-504)	Full Marks:	50
Credit hrs:	2 (30 Lecture hrs.)	Level:	M.Sc.1 st Sem.
Topic:	Hydrometeors	Period:	First
Instructor:	Ram Hari Acharya	Unit:	Three

Objectives:

At the end of the topic, students will be able to:

- Define severe storm and hail
- Conceptualize the life cycle of thunderstorm cells
- Visualize the basic thermodynamics of hail growth

Resources:

• Computer with internet facility and presentation slides, White board and marker

Activities:

- Attendance (5mins)
- Feed back to the assignment(10mins)
- Introduction on severe storm and hail (5min)
- Description of the life cycle of thunderstorm cells (10min)
- Explanation on the basic thermodynamics of hail growth with thermodynamic diagram(10min)
- Discussion on student's queries related to the topic (10mins)

Evaluation: (8mins)

- Ask questions to some selected students and evaluate their response;
- Q1. What could be the CAPE value for hail event (with the help of thermodynamic plot)?

Q2. Find out the lapserate between 850–500 hPa and 500–300 hPa (in the given thermodynamic plot)??

Assignment: (2mins)

• Prepare the case study report on hail event (based on your choise).

- Aryal, D. (2018). Severe Hail Storm at Thori: A Case Study. Tribhuvan University Journal, 32(1), 25-50.
- Dhungana, N., Silwal, N., Upadhaya, S., Regmi, S. K., & Adhikari, S. (2018). Local people's perception and awareness of climate change: a case study from community forests in Lamjung District, Western Nepal. Banko Janakari, 28(2), 60-71.

Institute:	Institute of Science and Technology, TU	Date:	
Department	Central Department of Hydrology and Meteorology	Time:	
Subject:	Cloud Physics (Hymet-504)	Full Marks:	50
Credit hrs:	2 (30 Lecture hrs.)	Level:	M.Sc.1 st Sem.
Торіс:	Precipitation	Period:	First
Instructor:	Ram Hari Acharya	Unit:	Four

Objectives:

At the end of the topic, students will be able to:

- Define precipitation
- Outline the necessary condition to release precipitation from any cloud
- Distinguish between the different types and forms of precipitation

Resources:

• Computer with internet facility and presentation slides, White board and marker

Activities:

- Attendance (5mins)
- Feedback to the assignment(10mins)
- Introduce the necessary conditions of precipitation release from the cloud(10min)
- Discussion on different types and forms of precipitation (10min)
- Discussion on the precipitation measurement(5min)
- Address all the queries from students (10mins)

Evaluation: (8mins

- Ask questions to some selected students and evaluate their response;
- Q1. What causes precipitation to fall as freezing rain?
- Q2. What causes precipitation to fall as snow?

Assignment: (2min)

- Describe the role of precipitation to maintain water cycle?
- How can you predict for chance of rainfall with surface and upper air observation?

- <u>https://www.nationalgeographic.org/encyclopedia/water-</u> cycle/#:~:text=When%20molecules%20of%20water%20vapor,rivers%2C%20streams%2C%20and%20lakes. https://www.accessscience.com/content/weather-forecasting-and-prediction/742600 •

Institute:	Institute of Science and Technology, TU	Date:	
Department:	Central Department of Hydrology and Meteorology	Time:	
Subject:	Cloud Physics (Hymet-504)	Full Marks:	50
Credit hrs:	2 (30 Lecture hrs.)	Level:	M.Sc.1 st Sem.
Topic:	Precipitation theories	Period:	First
Instructor:	Ram Hari Acharya	Unit:	Four

Objectives:

At the end of the topic, students will be able to:

- Explain about the Collision Coalescence theory
- Explain the Ice-crystal theory

<u>Resources</u>:

• Computer with internet facility and presentation slides, White board and marker

Activities:

- Attendance (5mins)
- Feedback to the assignment(10mins)
- Introduction to the Collision-Coalescence theory and Ice-crystal theory for rain making (20min)
- Discussion on the importance of vapor pressure difference between water droplets and single ice crystal in making rain (5min)
- Address all the queries from students (10mins)

Evaluation: (8mins

- Ask questions to some selected students and evaluate their response;
- Q1. Which theory you think is most appropriate for making snowfall? Why?

Assignment: (2min)

• How can you analyze rainfall anomalies if you have 30 years of observation?

• <u>https://www.researchgate.net/publication/311863614_Comparing_smallholder_farmers%27_percept_ion_of_climate_change_with_meteorological_data_A_case_study_from_southwestern_Nigeria/figur_es?lo=1</u>

Institute:	Institute of Science and Technology, TU	Date:	
Department :	Central Department of Hydrology and Meteorology	Time:	
Subject:	Cloud Physics (Hymet-504)	Full Marks:	50
Credit hrs:	2 (30 Lecture hrs.)	Level:	M.Sc.1 st Sem.
Topic:	Precipitation processes	Period:	First
Instructor:	Ram Hari Acharya	Unit:	Four

Objectives:

At the end of the topic, students will be able to:

- Visualize the layer clouds
- Explain the physical processes responsible for the release of precipitation from layer clouds
- Sketch a schematic diagram of precipitation release process

<u>Resources</u>:

• Computer with internet facility and presentation slides, White board and marker

Activities:

- Attendance (5mins)
- Feedback to the assignment(10mins)
- Introduction to the layer clouds (5min)
- Description of the physical processes involved in precipitation release from layer clouds with diagram(20min)
- Address all the queries from students (10mins)

Evaluation: (8mins

• Ask questions to some selected students and evaluate their response;

Q1. Is Wegener-Bergeron process is responsible for the release of precipitation from stratiform (layered) clouds? Why was it important?

Assignment: (2min)

• Find some differences between the layer and shower clouds?

<u>Reference:</u>

• https://link.springer.com/article/10.1007/BF02247277

Institute:	Institute of Science and Technology, TU	Date:	
Department:	Central Department of Hydrology and Meteorology	Time:	
Subject:	Cloud Physics (Hymet-504)	Full Marks:	50
Credit hrs:	2 (30 Lecture hrs.)	Level:	M.Sc.1 st Sem.
Topic:	Precipitation processes	Period:	First
Instructor:	Ram Hari Acharya	Unit:	Four

Objectives:

At the end of the topic, students will be able to:

- Visualize the cumulus type or showers clouds
- Explain the physical processes responsible for the release of precipitation from showers clouds
- Sketch a schematic diagram of precipitation release process in shower cloud

<u>Resources</u>:

• Computer with internet facility and presentation slides, White board and marker

Activities:

- Attendance (5mins)
- Feedback to the assignment(10mins)
- Introduction to the shower/cumulus clouds (5min)
- Description of the physical processes involved in precipitation release from shower clouds with diagram(20min)
- Address all the queries from students (10mins)

Evaluation: (8mins

- Ask questions to some selected students and evaluate their response;
- Q1. Which cloud produce heavy precipitation for a short duration? How?

Assignment: (2min)

• Find some differences between the precipitation release process from layer and shower clouds?

<u>Reference:</u>

• <u>https://link.springer.com/article/10.1007/BF02247277</u>

Institute:	Institute of Science and Technology, TU	Date:	
Department:	Central Department of Hydrology and Meteorology	Time:	
Subject:	Cloud Physics (Hymet-504)	Full Marks:	50
Credit hrs:	2 (30 Lecture hrs.)	Level:	M.Sc.1 st Sem.
Topic:	Mesoscale structure of rain	Period:	First
Instructor:	Ram Hari Acharya	Unit:	Four

Objectives:

At the end of the topic, students will be able to:

- Describe the observation technique of cloud to study the microphysical characteristics
- Visualize the organization of precipitation around a cold front
- Conceptualize the vertical profile of (a) Rechardson Number (b) potential temperature (c) wind shear and other parameters in the rain bearing clouds

<u>Resources</u>:

• Computer with internet facility and presentation slides, White board and marker

Activities:

- Attendance (5mins)
- Feedback to the assignment(10mins)
- Introduction to the mesoscale features of the clouds (5min)
- Description of the precipitation around a cold front (10min)
- Demonstration of various meteorological parameters with their vertical profiles(10min)
- Address all the queries from students (10mins)

Evaluation: (8mins

• Ask questions to some selected students and evaluate their response;

Q1. What do you think about the existence of cold front mostly associated with rain shower? How?

Assignment: (2min)

• Describe briefly the distribution and structure of rainfall in a cyclone wave.

Reference:

• https://journals.ametsoc.org/mwr/article/123/2/241/65283

Institute:	Institute of Science and Technology, TU	Date:	
Department:	Central Department of Hydrology and Meteorology	Time:	
Subject:	Cloud Physics (Hymet-504)	Full Marks:	50
Credit hrs:	2 (30 Lecture hrs.)	Level:	M.Sc.1 st Sem.
Topic:	Precipitation Efficiency of cloud	Period:	First
Instructor:	Ram Hari Acharya	Unit:	Four

Objectives:

At the end of the topic, students will be able to:

- Conceptualize the clouds behaviors in the atmosphere
- Define and describe the precipitation efficiency of the clouds

Resources:

• Computer with internet facility and presentation slides, White board and marker

Activities:

- Attendance (5mins)
- Feedback to the assignment(10mins)
- Introduction to the clouds behaviors in atmosphere (10min)
- Description of the precipitation efficiency of cloud based on drop-size distribution and other parameters (15min)
- Address all the queries from students (10mins)

Evaluation: (8mins

- Ask questions to some selected students and evaluate their response;
- Q1. What causes the low precipitation efficiency of shower cloud?

Assignment: (2min)

• What do you think about the artificial modification of precipitation efficiency in cloud? Write your own views.

- <u>https://en.wikipedia.org/wiki/Weather_modification</u>
- <u>https://www.wmo.int/pages/prog/arep/wwrp/new/documents/WMR_documents.final_27_April_1.FINAL.pdf</u>

Institute:	Institute of Science and Technology, TU	Date:	
Department:	Central Department of Hydrology and Meteorology	Time:	
Subject:	Cloud Physics (Hymet-504)	Full Marks:	50
Credit hrs:	2 (30 Lecture hrs.)	Level:	M.Sc.1 st Sem.
Topic:	Artificial weather modification	Period:	First
Instructor:	Ram Hari Acharya	Unit:	Five

Objectives:

At the end of the topic, students will be able to:

- Introduce the historical scheme of cloud modification (global practices)
- Identify the historical lacking in weather modification practices

Resources:

• Computer with internet facility and presentation slides, White board and marker

Activities:

- Attendance (5mins)
- Feedback to the assignment(10mins)
- Introduction on artificial weather modification (5mins)
- Introduction on various historical practices (global) on artificial weather modification (10mins)
- Interaction on major lacking on historical practices (10min)
- Suggest the solutions for student's queries related to the topic (10mins)

Evaluation: (8mins

- Ask questions to some selected students and evaluate their response;
- Q1. What could be the economic benefits of artificial weather modification?

Q2. Is there any negative impact of artificial weather modification?

Assignment:

• Conduct a social survey in your community and make short report on historical practices of rainmaking in your community. Also highlight lacking in such practice.

Reference:

• <u>https://www.npr.org/templates/story/story.php?storyId=16281915</u>

Institute:	Institute of Science and Technology, TU	Date:	
Department:	Central Department of Hydrology and Meteorology	Time:	
Subject:	Cloud Physics (Hymet-504)	Full Marks:	50
Credit hrs:	2 (30 Lecture hrs.)	Level:	M.Sc.1 st Sem.
Topic:	Artificial weather modification	Period:	First
Instructor:	Ram Hari Acharya	Unit:	Five

Objectives:

At the end of the topic, students will be able to:

- Highlight the importance of artificial weather modification
- Define cloud seeding
- Explain the effectiveness of cloud seeding and controlling factors

Resources:

• Computer with internet facility and presentation slides, White board and marker

Activities:

- Attendance (5mins)
- Feedback to the assignment(10mins)
- Discussion on importance and challenges of artificial weather modification (10mins)
- Introduction on cloud seeding (10mins)
- Suggest the solutions for student's queries related to the topic (10mins)

Evaluation: (8mins

- Ask questions to some selected students and evaluate their response;
- Q1. How the relative humidity (Moisture) and temperature within a cloud is important?

Assignment:

• Create an idea on "the artificial weather modification could enhance the recent climate change".

Reference:

• https://en.wikipedia.org/wiki/Weather modification

• <u>https://www.wmo.int/pages/prog/arep/wwrp/new/documents/WMR_documents.final_27_April_1.FINAL.pdf</u>

Institute:	Institute of Science and Technology, TU	Date:	
Department:	Central Department of Hydrology and Meteorology	Time:	
Subject:	Cloud Physics (Hymet-504)	Full Marks:	50
Credit hrs:	2 (30 Lecture hrs.)	Level:	M.Sc.1 st Sem.
Topic:	Artificial weather modification	Period:	First
Instructor:	Ram Hari Acharya	Unit:	Five

Objectives:

At the end of the topic, students will be able to:

- Explain different types of cloud seeding
- Conceptualize different seeding methods

Resources:

• Computer with internet facility and presentation slides, White board and marker

Activities:

- Attendance (5mins)
- Feedback to the assignment(10mins)
- Introduction on types of cloud seeding (15mins)
- Introduction of different cloud seeding methods(10min)
- Suggest the solutions for student's queries related to the topic (10mins)

Evaluation: (8mins

• Ask questions to some selected students and evaluate their response;

Q1. What do you mean by Hygroscopic and Glaciogenic agents? Do you think about the feeding of direct water to the cloud become effective in rainmaking?

Assignment:

• Write a paragraph about your own ideas on "feasibility and effectiveness of aircraft seeding of cloud to enhance precipitation in Nepal".

<u>Reference:</u>

- <u>https://indianexpress.com/article/explained/cloud-seeding-technology-delhi-pollution-iit-kanpur-study-6110548/</u>
- <u>https://india.mongabay.com/2019/08/what-is-cloud-seeding/</u>
- <u>https://en.wikipedia.org/wiki/Cloud_seeding</u>

Institute:	Institute of Science and Technology, TU	Date:	
Department :	Central Department of Hydrology and Meteorology	Time:	
Subject:	Cloud Physics (Hymet-504)	Full Marks:	50
Credit hrs:	2 (30 Lecture hrs.)	Level:	M.Sc.1 st Sem.
Topic:	Artificial weather modification	Period:	First
Instructor:	Ram Hari Acharya	Unit:	Five

Objectives:

At the end of the topic, students will be able to:

- Introduce both the warm and cold cloud
- Explain about the warm cloud seeding
- Create a diagram of warm cloud seeding

Resources:

• Computer with internet facility and presentation slides, White board and marker

Activities:

- Attendance (5mins)
- Feedback to the assignment(10mins)
- Introduction on warm and cold cloud (5mins)
- Description on the warm cloud seeding (20min)
- Suggest the solutions for student's queries related to the topic (10mins)

Evaluation: (8mins

- Ask questions to some selected students and evaluate their response;
- Q1. Create a schematic diagram of warm cloud seeding?

Assignment:

• Explain how china in 2008 Olympic practice to stop rain?

Reference:

• https://www.businessinsider.com/china-sets-aside-millions-to-control-the-rain-2016-7

• <u>https://www.independent.co.uk/sport/olympics/how-beijing-used-rockets-to-keep-opening-ceremony-dry-890294.html</u>

Institute:	Institute of Science and Technology, TU	Date:	
Department:	Central Department of Hydrology and Meteorology	Time:	
Subject:	Cloud Physics (Hymet-504)	Full Marks:	50
Credit hrs:	2 (30 Lecture hrs.)	Level:	M.Sc.1 st Sem.
Topic:	Artificial weather modification	Period:	First
Instructor:	Ram Hari Acharya	Unit:	Five

Objectives:

At the end of the topic, students will be able to:

- Explain about the cold cloud seeding
- Create a diagram of cold cloud seeding
- Conceptualize on artificial cloud and fog dissipation

Resources:

• Computer with internet facility and presentation slides, White board and marker

Activities:

- Attendance (5mins)
- Feedback to the assignment(10mins)
- Description on the cold cloud seeding (15min)
- Introduction on cloud and fog dissipation (10min)
- Suggest the solutions for student's queries related to the topic (10mins)

Evaluation: (8mins

- Ask questions to some selected students and evaluate their response;
- Q1. Create a schematic diagram of cold cloud seeding?

Assignment:

• How many countries are involved in cloud seeding practice? Describe the physics of fog dissipation and hail suppression with examples.

Reference:

- •
- •
- https://en.wikipedia.org/wiki/Cloud_seeding https://climate.usu.edu/cloudSeeding/index.php https://india.mongabay.com/2019/08/what-is-cloud-seeding/ •

Institute:	Institute of Science and Technology, TU	Date:	
Department:	Central Department of Hydrology and Meteorology	Time:	
Subject:	Cloud Physics (Hymet-504)	Full Marks:	50
Credit hrs:	2 (30 Lecture hrs.)	Level:	M.Sc.1 st Sem.
Topic:	Microstructure of Clouds and Precipitation	Period:	First
Instructor:	Ram Hari Acharya	Unit:	Six

Objectives:

At the end of the topic, students will be able to:

- Introduce the parameters that defines the microstructure of clouds
- Conceptualize on the different techniques to study the microstructure of clouds

Resources:

• Computer with internet facility and presentation slides, White board and marker

Activities:

- Attendance (5mins)
- Feed back to the assignment(10mins)
- Introduction to the microstructure of cloud(15min)
- Description on the techniques used to study the microstructure of clouds (10min)
- Suggest the solutions for student's queries related to the topic (10mins)

Evaluation: (8mins)

- Ask questions to some selected students and evaluate their response;
- Q1.How RADAR works on detecting droplets inside the clouds?

Assignment: (2mins)

• Describe the sensors that are equipped in aircraft for measurement of cloud microphysics.

Reference:

• https://climate.usu.edu/cloudSeeding/index.php

Institute:	Institute of Science and Technology, TU	Date:	
Department:	Central Department of Hydrology and Meteorology	Time:	
Subject:	Cloud Physics (Hymet-504)	Full Marks:	50
Credit hrs:	2 (30 Lecture hrs.)	Level:	M.Sc.1 st Sem.
Topic:	Microstructure of Clouds and Precipitation	Period:	First
Instructor:	Ram Hari Acharya	Unit:	Six

Objectives:

At the end of the topic, students will be able to:

• Describe the relative humidity inside clouds and Fogs

Resources:

• Computer with internet facility and presentation slides, White board and marker

Activities:

- Attendance (5mins)
- Feed back to the assignment(10mins)
- Introduction to the variation of relative humidity as temperature changes in vertical (10min)
- Explain the relative humidity inside clouds and Fogs with graph demonstration (15min)
- Discussion on student's queries related to the topic (10mins)

Evaluation: (8mins)

- Ask questions to some selected students and evaluate their response;
- Q1. What could be the range of RH inside the cloud and fog?

Assignment: (2mins)

• Review the following papers and make a review report

Reference:

- Willett et.al, (2010); Willett, K. M., Jones, P. D., Thorne, P. W., & Gillett, N. P. (2010). A comparison of large scale changes in surface humidity over land in observations and CMIP3 general circulation models. Environmental Research Letters, 5(2), 025210.
- Alessandro.et al.,(2019): Cloud Phase and Relative Humidity Distributions over the Southern Ocean in Austral Summer Based on In Situ Observations and CAM5 Simulations. J. Climate, 32, 2781–2805, https://doi.org/10.1175/JCLI-D-18-0232.1.

Institute:	Institute of Science and Technology, TU	Date:	
Department :	Central Department of Hydrology and Meteorology	Time:	
Subject:	Cloud Physics (Hymet-504)	Full Marks:	50
Credit hrs:	2 (30 Lecture hrs.)	Level:	M.Sc.1 st Sem.
Торіс:	Microstructure of Clouds and Precipitation	Period:	First
Instructor:	Ram Hari Acharya	Unit:	Six

Objectives:

At the end of the topic, students will be able to:

- Introduce about the microstructure of cloud and fog
- Explain the drop size distribution in clouds and Fogs

Resources:

• Computer with internet facility and presentation slides, White board and marker

Activities:

- Attendance (5mins)
- Feed back to the assignment(10mins)
- Introduction to the microstructure of cloud and fog (10min)
- Detail description of the drop size distribution in clouds and Fogs (15min)
- Discussion on student's queries related to the topic (10mins)

Evaluation: (8mins)

• Ask questions to some selected students and evaluate their response;

Q1. What could be the maximum and minimum drop size found to be distributed within a cloud?

Q1. What difference could you find in the droplets size as per the location?

Assignment: (2mins)

• Chose an event of foggy day in a surroundins surface station and analyze tha following parameters

- (a) Relative humidity
- (b) Temperature
- (c) Wind speed

Reference:

• Gerber, H., 1991: Supersaturation and Droplet Spectral Evolution in Fog. J. Atmos. Sci., 48, 2569–2588, <u>https://doi.org/10.1175/1520-0469(1991)048<2569:SADSEI>2.0.CO;2</u>.